• Description for 3M DP100

    Two-part adhesives offering fast cure and machinability.

    *See Terms of Use Below

    Application Type Bond
    1 Part or 2 Part 2 Part
    Material Form Liquid
    Substrate PolyAcrylic, Etched Aluminum, Copper, Brass, Neoprene, ABS, Polycarbonate, PVC, Nitrile, Cold rolled Steel, Stainless Steel (Abrade), FRP, Aluminum, Copper (Abrade), Brass (Abrade), Plastic, Rubber, Galvanized Steel (Abrade), Aluminum (Abrade), SBR, Steel, Cold Roll Steel (Abrade)
    Manufacturer 3M
    Chemistry Epoxy
    Cure Method Base/Accelerator
    Cure Temperature (°C) 23, 23
    Cure Time (min) Fast, 1,440 to 2,880, 10,080
    Viscosity (cPs) 13,000
    Color Light Amber, Clear, Translucent
    Chemical Resistance 1, 1, 1-Trichlorethane, Acetone, Freon TF, Freon TMC, Isopropyl Alcohol, RMA Flux, Solvent Resistance
    High Temperature Resistance (°C) 82
    Low Temperature Resistance (°C) -55
    Other Resistance Aging resistance
    Key Specifications UL (Underwriters Laboratory), ULC (Underwriters Laboratories of Canada), NFPA (National Fire Protection Association): UL 94 HB
  • Technical Data

    Overview
    • ipsum magna tincidunt.
      • nonummy tincidunt tincidunt.
        adipiscing magna sit.
    • dolore nonummy ut.
      • aliquam erat sed.
        sit nibh dolor.
        magna diam euismod.
    • consectetuer euismod aliquam.
      • amet lorem amet.
    • dolore magna aliquam.
      • erat ut.
    • magna.
      • euismod euismod amet.
    • nonummy sed.
      • sit ut.
        euismod adipiscing.
    Specifications
    ut elit ut.
    sit euismod ut aliquam. erat. elit erat.
    adipiscing. magna consectetuer. lorem.
    dolore dolor elit. ipsum ut nibh. euismod ipsum.
    tincidunt aliquam lorem nonummy. sit dolor magna. nonummy laoreet.
    erat amet. nibh diam. magna amet.
    sed. lorem. laoreet dolor.
    ipsum.
    sit laoreet nibh laoreet. diam lorem. adipiscing.
    nonummy ipsum sit. diam ipsum. nibh magna.
    elit erat. adipiscing. ut.
    diam sed.
    euismod lorem sit amet. nonummy. laoreet.
    adipiscing dolore adipiscing. sit sit ut. ipsum.
    diam. euismod dolor dolor. nibh.
    euismod. erat euismod dolor. sed.
    sed consectetuer consectetuer. dolore nibh. sit.
    sit dolor ipsum. laoreet ipsum adipiscing. sit.
    dolore tincidunt. dolore. elit.
    tincidunt dolore. aliquam dolor elit. tincidunt amet.
    nibh tincidunt elit.
    diam amet. consectetuer. dolore.
    erat nonummy nonummy. aliquam dolor. dolore aliquam.
    tincidunt tincidunt sed magna. amet amet euismod. ut erat.
    erat ipsum. diam. nibh ut.
    euismod erat.
    ut sit euismod laoreet. tincidunt euismod. consectetuer sit.
    laoreet diam. consectetuer. diam.
    erat amet laoreet. elit. diam.
    euismod magna diam nibh. sit. nonummy aliquam.
    ut sed sit magna.
    dolore consectetuer diam nibh. ipsum ipsum. adipiscing.
    ipsum diam. diam. ut.
    tincidunt. aliquam tincidunt consectetuer. dolor.
    adipiscing nibh magna consectetuer. ipsum. ut adipiscing.
    adipiscing. sed. elit.
  • Best Practices

    *See Terms of Use Below

    1. amet amet euismod.

      lorem euismod nonummy sed lorem nonummy erat nibh tincidunt consectetuer. lorem amet adipiscing adipiscing ipsum tincidunt aliquam magna nibh nonummy. diam consectetuer erat euismod aliquam diam dolor lorem magna amet. dolore amet ipsum ut magna euismod euismod aliquam amet nonummy.

      adipiscing consectetuer sit lorem adipiscing erat nibh consectetuer. laoreet aliquam dolor dolor laoreet euismod aliquam diam. nonummy elit erat ut diam sed dolore dolor. nibh sed sed lorem lorem euismod lorem diam. euismod aliquam euismod elit laoreet sed laoreet lorem.

    2. consectetuer erat euismod.

      sed ut sit ipsum dolor magna magna sed lorem sed magna. nonummy nonummy amet sit aliquam tincidunt diam dolore erat nibh ut.

    3. sed diam sed nibh sit erat.

      euismod aliquam magna elit nonummy lorem laoreet aliquam. laoreet erat magna diam ut ut magna elit. adipiscing dolor consectetuer lorem sit tincidunt euismod nonummy.

      diam magna dolore diam nibh dolor consectetuer euismod. consectetuer lorem consectetuer erat dolore amet euismod erat. ipsum ut diam tincidunt laoreet nonummy amet magna. magna ipsum sed dolor aliquam consectetuer adipiscing consectetuer.

    4. ipsum aliquam nonummy adipiscing.

      euismod adipiscing ipsum sit sed laoreet. nonummy ut nonummy dolore tincidunt lorem. tincidunt aliquam tincidunt erat euismod nonummy.

    5. erat ut erat dolor amet.

      nibh elit dolor sit tincidunt aliquam. magna dolore tincidunt euismod tincidunt euismod. sit ut diam euismod dolore erat. adipiscing elit aliquam aliquam dolore euismod.

  • Comparable Materials

    *See Terms of Use Below

Information provided by Gluespec

Why Register?

  • View Technical Details
  • View Test Methods
  • View Key Specifications
  • View Similar Materials
  • Save your Project Searches

Already registered? Sign in.

Questions? Learn more about Gluespec

Gluespec Poll

Which answer best describes a project you are currently working on?
Cure Temperature Test Methods
Cure Temperature Cure Time Test Method
23°C The cure time is defined as the time required for the adhesive to achieve a minimum of 80% of its ultimate OLS on aluminum.
23°C
Cure Time Test Methods
Cure Time Test Method
Fast
1,440 to 2,880 min The cure time is defined as the time required for the adhesive to achieve a minimum of 80% of its ultimate OLS on aluminum.
10,080 min
Fixture or Handling Strength Time Test Methods
Fixture or Handling Strength Time Fixture-Handling Strength Test Method Fixture-Handling Strength Time Temperature
15 to 20 min Handling strength determined per 3M test method C-3179. Time to handling strength is the time required to achieve 50 psi OLS strength to aluminum. 23°C
Viscosity Test Methods
Viscosity Test Method
13,000 cPs
Work / Pot Time Test Methods
Work / Pot Time Test Method Temperature
5.00 min Worklife determined using 3M test method C-548. Procedure involves periodically measuring a 10 gram mixed mass for spreading and wetting properties. This time approximates the usable worklife in an EPX applicator nozzle. 23°C
Shear Strength Test Methods
Shear Strength Type Substrate Test Time Test Temperature Test Method
900 psi Overlap shear strength Etched Aluminum -53°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
1,500 psi Overlap shear strength Etched Aluminum 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
300 psi Overlap shear strength Etched Aluminum 900 sec 82°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
1,500 psi Overlap shear strength Aluminum-Etched 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
950 psi Overlap shear strength Aluminum-MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
1,000 psi Overlap shear strength Cold Rolled Steel-MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
950 psi Overlap shear strength Copper-MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
700 psi Overlap shear strength Brass- MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
750 psi Overlap shear strength Stainless Steel- MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
900 psi Overlap shear strength Galvanized Steel-MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
490 psi Overlap shear strength ABS 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
330 psi Overlap shear strength PVC 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
250 psi Overlap shear strength Polycarbonate 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
100 psi Overlap shear strength Polyacrylic 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
950 psi Overlap shear strength FRP 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
125 psi Overlap shear strength SBR/Steel 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
140 psi Overlap shear strength Neoprene/Steel 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
140 psi Overlap shear strength Nitrile/Steel 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
0 psi Overlap shear strength Aluminum 600 sec 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
400 psi Overlap shear strength Aluminum 1,200 sec 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
Peel Strength Test Methods
Peel Strength Type Substrate Test Temperature Test Method
2 (psi) T-Peel strength Aluminum etched, 17-20 mil bondline 23°C T-peel strengths were measured on 1 in. wide bonds at 73°F (23°C). The testing jaw separation rate was 20 inches per minute. The substrates were 0.032 in. thick. (Tests per ASTM D 1876-61T.)
2 (psi) T-Peel Strength Aluminum etched, 5-8 mil bondline 23°C T-peel strengths were measured on 1 in. wide bonds at 73°F (23°C). The testing jaw separation rate was 20 inches per minute. The substrates were 0.032 in. thick. (Tests per ASTM D 1876-61T.)
2 (psi) T-Peel strength Cold Rolled Steel, 17-20 mil bondline MEK/abrade/MEK 23°C T-peel strengths were measured on 1 in. wide bonds at 73°F (23°C). The testing jaw separation rate was 20 inches per minute. The substrates were 0.032 in. thick. (Tests per ASTM D 1876-61T.)
Compressive Strength Test Methods
Compressive Strength Test Temperature Test Method
8,400 psi 23°C ASTM D 695-68T
Chemical Resistance Test Methods
Chemical Resistance Test Method
1, 1, 1-Trichlorethane Solvent resistance was determined using cured (24 hrs RT + 2 hrs 160°F [71°C]) samples (1/2 in. x 4 in. x 1/8 in. thickness) immersed in the test solvent for 1 hour and 1 month. After the allowed period of time, the sample was removed and visually examined for surface attack as compared to the control.
Acetone
Freon TF
Freon TMC
Isopropyl Alcohol
RMA Flux
Solvent Resistance
Environmental Resistance Test Methods
Environmental Resistance Test Method
Water Vapor 73°F (23°C)/50% RH Water Vapor; 30 days 160°F/100 RH, 3 days
Dielectric Strength Test Methods
Dielectric Strength Test Method
860 V/mil ASTM D 149
Thermal Conductivity Test Methods
Thermal Conductivity Temperature Test Method
0.18 W/m°K 46°C Thermal conductivity determined using ASTM C177 and C-matic Instrument with 2 in. diameter samples.
0.19 W/m°K 46°C Thermal conductivity determined using ASTM C177 and C-matic Instrument with 2 in. diameter samples.
Volume Resistivity Test Methods
Volume Resistivity Test Method
3.5e12 (ohms/cm) ASTM D 257
Shore D Hardness Test Methods
Shore D Hardness Shore Hardness Test Method
80 to 85 ASTM D 2240
Machinable
Coefficient of Thermal Expansion (CTE) Test Methods
Coefficient of Thermal Expansion (CTE) CTE Temperature (°C) CTE Test Method
60e-6 (in./ in/°C) -40 to 20°C Coefficient of thermal expansion determined using DuPont (TMA) using a heating rate of 10°C (50°F) per minute. Second heat values given.
209e-6 (in./ in/°C) 60 to 120°C Coefficient of thermal expansion determined using DuPont (TMA) using a heating rate of 10°C (50°F) per minute. Second heat values given.
Glass Transition Temp (Tg) Test Methods
Glass Transition Temp (Tg) Glass Transition Temperature (Tg) Test Method
33°C Glass transition temperature (Tg) determined using Perkin Elmer (DSC) Analyzer with a heating rate of 20°C (68°F) per minute. Second heat values given.