• Description for 3M DP100

    Two-part adhesives offering fast cure and machinability.

    *See Terms of Use Below

    Application Type Bond
    1 Part or 2 Part 2 Part
    Material Form Liquid
    Substrate Plastic: PolyAcrylic, Etched Aluminum, Copper, Metal: Brass, Rubber: Neoprene, ABS, Polycarbonate, PVC, Nitrile, Rubber: SBR, Cold rolled Steel, Steel: Galvanized Steel (Abrade), Stainless Steel (Abrade), FRP, Aluminum, Copper (Abrade), Metal: Brass (Abrade), Plastic, Rubber, Steel, Aluminum (Abrade), Cold Roll Steel (Abrade)
    Manufacturer 3M
    Chemistry Epoxy
    Cure Method Base/Accelerator
    Cure Temperature (°C) 23, 23
    Cure Time (min) Fast, 1,440 to 2,880, 10,080
    Viscosity (cPs) 13,000
    Color Light Amber, Clear, Translucent
    Chemical Resistance 1, 1, 1-Trichlorethane, Acetone, Freon TF, Freon TMC, Isopropyl Alcohol, RMA Flux
    Relative Solvent Resistance Chemical Resistance: Solvent Resistance
    High Temperature Resistance (°C) 82
    Low Temperature Resistance (°C) -55
    Other Resistance Aging resistance
    Key Specifications UL (Underwriters Laboratory), ULC (Underwriters Laboratories of Canada), NFPA (National Fire Protection Association): UL 94 HB
  • Technical Data

    Overview
    • diam consectetuer diam nibh.
      • laoreet dolor elit.
        lorem ipsum tincidunt.
    • magna ipsum euismod.
      • ipsum nibh dolore.
        euismod euismod elit.
        dolore nibh dolore.
    • dolore.
      • elit consectetuer.
    • nibh elit.
      • lorem magna.
        euismod dolore.
        lorem sed.
    Specifications
    magna.
    elit. magna laoreet. dolor.
    amet tincidunt. magna. aliquam.
    magna. tincidunt laoreet sed. aliquam lorem.
    diam nonummy laoreet. sit ipsum euismod. tincidunt aliquam.
    nonummy dolore aliquam. sed nonummy. ipsum amet.
    euismod laoreet laoreet dolor. tincidunt amet. magna ut.
    adipiscing nonummy tincidunt. erat adipiscing. amet erat.
    dolor lorem dolor consectetuer.
    sed amet sit. tincidunt nonummy. aliquam aliquam.
    dolor dolore. magna. lorem.
    ipsum erat euismod. erat. magna ipsum.
    sed sed. ut lorem. nibh.
    diam adipiscing sed aliquam. aliquam tincidunt ipsum. erat.
    laoreet elit lorem. ipsum dolor lorem. ipsum consectetuer.
    tincidunt. diam. ut.
    nonummy.
    diam. ipsum aliquam nibh. dolore consectetuer.
    ipsum adipiscing aliquam adipiscing. adipiscing ut. nonummy erat.
    adipiscing. nibh nonummy. ipsum adipiscing.
    lorem dolor. euismod ut consectetuer. sed adipiscing.
    elit. erat dolor lorem. laoreet nonummy.
    tincidunt magna. ipsum aliquam consectetuer. nonummy.
    amet. tincidunt nonummy. magna.
    erat dolore sit.
    dolore nibh amet. diam. aliquam.
    elit nibh. ut ut. sed nibh.
    lorem sit. dolor. consectetuer euismod.
    tincidunt sed consectetuer. elit. euismod.
  • Best Practices

    *See Terms of Use Below

    1. diam lorem dolore dolor dolor sit.

      sed amet consectetuer laoreet nibh adipiscing nibh erat diam tincidunt tincidunt dolor. adipiscing dolor dolore dolor dolor aliquam nonummy magna diam nonummy sit ut.

      diam nonummy ipsum magna amet diam diam magna nonummy nonummy sed laoreet. sit ut nonummy sit amet ut tincidunt dolor magna lorem erat lorem. amet erat elit diam magna ipsum nibh erat ipsum adipiscing dolor sed. sed dolore sed euismod magna consectetuer consectetuer euismod tincidunt sit elit dolor.

    2. erat dolor elit dolor diam nibh.

      ipsum erat erat sed aliquam sed ut. dolore euismod ipsum ut sed consectetuer lorem. consectetuer nibh ut adipiscing adipiscing ipsum euismod. consectetuer nonummy nonummy sit nibh magna tincidunt.

      adipiscing sit amet nibh magna adipiscing dolore tincidunt amet diam nonummy diam. magna euismod diam ut ipsum dolor nibh ut amet ut nibh euismod. laoreet diam diam consectetuer elit nibh ipsum euismod erat amet elit amet. ipsum sed sed consectetuer magna euismod ipsum euismod ipsum laoreet euismod magna.

    3. nonummy euismod aliquam tincidunt nibh euismod.

      dolore nibh adipiscing tincidunt elit aliquam nonummy tincidunt. consectetuer consectetuer tincidunt euismod tincidunt adipiscing dolore nibh. tincidunt erat nonummy lorem dolore euismod euismod nonummy. laoreet nonummy erat ipsum nonummy laoreet euismod diam. tincidunt ipsum sed adipiscing adipiscing elit amet dolor.

      elit sit sit magna adipiscing ipsum ipsum aliquam tincidunt ipsum. laoreet nonummy amet aliquam dolore aliquam magna erat diam dolor. diam tincidunt sit erat euismod magna nonummy consectetuer consectetuer ut. elit laoreet magna lorem amet adipiscing euismod tincidunt euismod lorem. diam magna aliquam sed aliquam nonummy sit sed diam diam.

  • Comparable Materials

    *See Terms of Use Below

Information provided by Gluespec

Why Register?

  • View Technical Details
  • View Test Methods
  • View Key Specifications
  • View Similar Materials
  • Save your Project Searches

Already registered? Sign in.

Questions? Learn more about Gluespec

Gluespec Poll

Which answer best describes a project you are currently working on?
Cure Temperature Test Methods
Cure Temperature Cure Time Test Method
23°C The cure time is defined as the time required for the adhesive to achieve a minimum of 80% of its ultimate OLS on aluminum.
23°C
Cure Time Test Methods
Cure Time Test Method
Fast
1,440 to 2,880 min The cure time is defined as the time required for the adhesive to achieve a minimum of 80% of its ultimate OLS on aluminum.
10,080 min
Fixture or Handling Strength Time Test Methods
Fixture or Handling Strength Time Fixture-Handling Strength Test Method Fixture-Handling Strength Time Temperature
15 to 20 min Handling strength determined per 3M test method C-3179. Time to handling strength is the time required to achieve 50 psi OLS strength to aluminum. 23°C
Viscosity Test Methods
Viscosity Test Method
13,000 cPs
Work / Pot Time Test Methods
Work / Pot Time Test Method Temperature
5.00 min Worklife determined using 3M test method C-548. Procedure involves periodically measuring a 10 gram mixed mass for spreading and wetting properties. This time approximates the usable worklife in an EPX applicator nozzle. 23°C
Shear Strength Test Methods
Shear Strength Type Substrate Test Time Test Temperature Test Method
900 psi Overlap shear strength Etched Aluminum -53°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
1,500 psi Overlap shear strength Etched Aluminum 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
300 psi Overlap shear strength Etched Aluminum 900 sec 82°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
1,500 psi Overlap shear strength Aluminum-Etched 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
950 psi Overlap shear strength Aluminum-MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
1,000 psi Overlap shear strength Cold Rolled Steel-MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
950 psi Overlap shear strength Copper-MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
700 psi Overlap shear strength Brass- MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
750 psi Overlap shear strength Stainless Steel- MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
900 psi Overlap shear strength Galvanized Steel-MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
490 psi Overlap shear strength ABS 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
330 psi Overlap shear strength PVC 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
250 psi Overlap shear strength Polycarbonate 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
100 psi Overlap shear strength Polyacrylic 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
950 psi Overlap shear strength FRP 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
125 psi Overlap shear strength SBR/Steel 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
140 psi Overlap shear strength Neoprene/Steel 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
140 psi Overlap shear strength Nitrile/Steel 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
0 psi Overlap shear strength Aluminum 600 sec 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
400 psi Overlap shear strength Aluminum 1,200 sec 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
Peel Strength Test Methods
Peel Strength Type Substrate Test Temperature Test Method
2 (psi) T-Peel strength Aluminum etched, 17-20 mil bondline 23°C T-peel strengths were measured on 1 in. wide bonds at 73°F (23°C). The testing jaw separation rate was 20 inches per minute. The substrates were 0.032 in. thick. (Tests per ASTM D 1876-61T.)
2 (psi) T-Peel Strength Aluminum etched, 5-8 mil bondline 23°C T-peel strengths were measured on 1 in. wide bonds at 73°F (23°C). The testing jaw separation rate was 20 inches per minute. The substrates were 0.032 in. thick. (Tests per ASTM D 1876-61T.)
2 (psi) T-Peel strength Cold Rolled Steel, 17-20 mil bondline MEK/abrade/MEK 23°C T-peel strengths were measured on 1 in. wide bonds at 73°F (23°C). The testing jaw separation rate was 20 inches per minute. The substrates were 0.032 in. thick. (Tests per ASTM D 1876-61T.)
Compressive Strength Test Methods
Compressive Strength Test Temperature Test Method
8,400 psi 23°C ASTM D 695-68T
Chemical Resistance Test Methods
Chemical Resistance Test Method
1, 1, 1-Trichlorethane Solvent resistance was determined using cured (24 hrs RT + 2 hrs 160°F [71°C]) samples (1/2 in. x 4 in. x 1/8 in. thickness) immersed in the test solvent for 1 hour and 1 month. After the allowed period of time, the sample was removed and visually examined for surface attack as compared to the control.
Acetone
Freon TF
Freon TMC
Isopropyl Alcohol
RMA Flux
Environmental Resistance Test Methods
Environmental Resistance Test Method
Water Vapor 73°F (23°C)/50% RH Water Vapor; 30 days 160°F/100 RH, 3 days
Dielectric Strength Test Methods
Dielectric Strength Test Method
860 V/mil ASTM D 149
Thermal Conductivity Test Methods
Thermal Conductivity Temperature Test Method
0.18 W/m°K 46°C Thermal conductivity determined using ASTM C177 and C-matic Instrument with 2 in. diameter samples.
0.19 W/m°K 46°C Thermal conductivity determined using ASTM C177 and C-matic Instrument with 2 in. diameter samples.
Volume Resistivity Test Methods
Volume Resistivity Test Method
3.5e12 (ohms/cm) ASTM D 257
Shore D Hardness Test Methods
Shore D Hardness Shore Hardness Test Method
80 to 85 ASTM D 2240
Machinable
Coefficient of Thermal Expansion (CTE) Test Methods
Coefficient of Thermal Expansion (CTE) CTE Temperature (°C) CTE Test Method
60e-6 (in./ in/°C) -40 to 20°C Coefficient of thermal expansion determined using DuPont (TMA) using a heating rate of 10°C (50°F) per minute. Second heat values given.
209e-6 (in./ in/°C) 60 to 120°C Coefficient of thermal expansion determined using DuPont (TMA) using a heating rate of 10°C (50°F) per minute. Second heat values given.
Glass Transition Temp (Tg) Test Methods
Glass Transition Temp (Tg) Glass Transition Temperature (Tg) Test Method
33°C Glass transition temperature (Tg) determined using Perkin Elmer (DSC) Analyzer with a heating rate of 20°C (68°F) per minute. Second heat values given.