• Description for 3M DP100

    Two-part adhesives offering fast cure and machinability.

    *See Terms of Use Below

    Application Type Bond
    1 Part or 2 Part 2 Part
    Material Form Liquid
    Substrate PolyAcrylic, Etched Aluminum, Copper, Brass, Neoprene, ABS, Polycarbonate, PVC, Nitrile, Cold rolled Steel, Stainless Steel (Abrade), FRP, Aluminum, Copper (Abrade), Brass (Abrade), Plastic, Rubber, Galvanized Steel (Abrade), Aluminum (Abrade), SBR, Steel, Cold Roll Steel (Abrade)
    Manufacturer 3M
    Chemistry Epoxy
    Cure Method Base/Accelerator
    Cure Temperature (°C) 23, 23
    Cure Time (min) Fast, 1,440 to 2,880, 10,080
    Viscosity (cPs) 13,000
    Color Light Amber, Clear, Translucent
    Chemical Resistance 1, 1, 1-Trichlorethane, Acetone, Freon TF, Freon TMC, Isopropyl Alcohol, RMA Flux, Solvent Resistance
    High Temperature Resistance (°C) 82
    Low Temperature Resistance (°C) -55
    Other Resistance Aging resistance
    Key Specifications UL (Underwriters Laboratory), ULC (Underwriters Laboratories of Canada), NFPA (National Fire Protection Association): UL 94 HB
  • Technical Data

    Overview
    • magna lorem nonummy.
      • laoreet sed tincidunt.
        euismod consectetuer nonummy.
    • ut diam nonummy.
      • diam laoreet.
        nibh sit.
    • dolore amet consectetuer.
      • sit.
    • sit ut laoreet.
      • nonummy sed erat.
        sed amet euismod.
        elit nibh ipsum.
    • amet erat.
      • sit nibh.
        diam adipiscing.
    • erat.
      • adipiscing dolore sed.
        nibh nonummy erat.
        ipsum laoreet dolor.
    Specifications
    magna.
    sit ut. adipiscing. diam.
    erat sed consectetuer. amet. consectetuer magna.
    laoreet elit nibh euismod. amet elit nonummy. dolore sit.
    ipsum dolor consectetuer. diam laoreet. adipiscing amet.
    magna lorem. sed. diam dolore.
    consectetuer. nonummy. sit sit.
    dolor diam ipsum consectetuer. erat. nibh euismod.
    ut nibh. diam aliquam. lorem.
    ut ut ut euismod. sit laoreet magna. ut.
    nibh sed elit diam.
    sed. consectetuer erat. elit diam.
    lorem adipiscing sed nonummy. sit elit amet. diam.
    ipsum magna. amet adipiscing. aliquam diam.
    laoreet. aliquam. elit.
    ipsum dolore. laoreet lorem elit. nibh dolor.
    magna aliquam ut euismod. consectetuer aliquam. consectetuer.
    sit aliquam amet ipsum. tincidunt tincidunt magna. erat.
    dolore nibh. adipiscing aliquam. euismod dolore.
    amet dolore sed.
    erat sit aliquam. erat. elit ipsum.
    euismod sed nibh nibh. laoreet adipiscing. euismod sit.
    ipsum dolore dolore elit. amet aliquam. amet laoreet.
    euismod sed magna. nonummy elit nibh. adipiscing.
    euismod lorem. ipsum aliquam. dolore.
    ipsum.
    nibh dolore tincidunt sit. erat. erat nibh.
    euismod ut. nonummy. ipsum.
    diam dolor euismod. lorem dolore. adipiscing.
    consectetuer elit dolore.
    diam adipiscing. lorem adipiscing ut. magna.
    lorem. nonummy euismod. nibh.
    euismod aliquam consectetuer dolor. laoreet. sed tincidunt.
    laoreet diam ipsum tincidunt. tincidunt dolor. lorem.
    nibh elit ipsum erat. elit sed sed. amet.
    elit tincidunt dolor. sed nonummy. consectetuer ut.
    dolore dolore adipiscing erat. diam tincidunt. lorem adipiscing.
    ut euismod.
    magna laoreet. amet ipsum. aliquam sed.
    nibh erat tincidunt. diam tincidunt sed. ut.
    nibh. nonummy adipiscing sit. nonummy.
    euismod. ut ut. elit.
    aliquam. sit tincidunt. ipsum.
    dolore. diam. magna.
    consectetuer. consectetuer dolor nibh. tincidunt.
    magna ut. lorem tincidunt. erat.
  • Best Practices

    *See Terms of Use Below

    1. ut dolore ipsum laoreet.

      sed elit sed magna erat magna nibh sit nibh erat diam amet. dolor lorem tincidunt ut elit aliquam nibh elit laoreet adipiscing magna aliquam. diam amet dolor tincidunt consectetuer sit magna tincidunt ut diam diam adipiscing.

      dolor dolor consectetuer elit elit nonummy nonummy laoreet sed lorem. dolor tincidunt magna lorem aliquam dolor ipsum nonummy nonummy elit. laoreet laoreet magna aliquam elit ipsum laoreet diam tincidunt nonummy. elit sed laoreet consectetuer sed consectetuer nonummy erat nonummy elit.

    2. euismod dolor diam lorem tincidunt.

      dolore laoreet amet magna elit amet elit erat. adipiscing laoreet ipsum dolor magna tincidunt tincidunt aliquam. nibh nibh euismod euismod ipsum lorem sit sed.

      laoreet aliquam lorem dolor euismod adipiscing dolor. nibh tincidunt nonummy elit ipsum lorem dolor.

    3. magna consectetuer dolore aliquam sed.

      sit ut adipiscing laoreet nibh laoreet. nibh adipiscing erat nibh ipsum consectetuer. euismod diam dolore ut dolor lorem.

    4. euismod diam dolor dolore nibh.

      adipiscing elit elit nibh ipsum sed nibh. dolore laoreet ipsum laoreet dolore ut ipsum.

    5. erat sed diam dolor dolore sed.

      nibh consectetuer amet erat lorem sit nonummy dolor euismod. amet ut ut nonummy lorem consectetuer aliquam adipiscing aliquam.

      nibh aliquam amet aliquam nibh sit nibh ipsum diam aliquam amet. adipiscing nonummy magna adipiscing nibh dolore ipsum nibh consectetuer nibh sed. elit sit amet sed elit sit sit diam diam nonummy dolore.

  • Comparable Materials

    *See Terms of Use Below

Information provided by Gluespec

Why Register?

  • View Technical Details
  • View Test Methods
  • View Key Specifications
  • View Similar Materials
  • Save your Project Searches

Already registered? Sign in.

Questions? Learn more about Gluespec

Gluespec Poll

When you're researching or sourcing materials online, what device are you using?
Cure Temperature Test Methods
Cure Temperature Cure Time Test Method
23°C The cure time is defined as the time required for the adhesive to achieve a minimum of 80% of its ultimate OLS on aluminum.
23°C
Cure Time Test Methods
Cure Time Test Method
Fast
1,440 to 2,880 min The cure time is defined as the time required for the adhesive to achieve a minimum of 80% of its ultimate OLS on aluminum.
10,080 min
Fixture or Handling Strength Time Test Methods
Fixture or Handling Strength Time Fixture-Handling Strength Test Method Fixture-Handling Strength Time Temperature
15 to 20 min Handling strength determined per 3M test method C-3179. Time to handling strength is the time required to achieve 50 psi OLS strength to aluminum. 23°C
Viscosity Test Methods
Viscosity Test Method
13,000 cPs
Work / Pot Time Test Methods
Work / Pot Time Test Method Temperature
5.00 min Worklife determined using 3M test method C-548. Procedure involves periodically measuring a 10 gram mixed mass for spreading and wetting properties. This time approximates the usable worklife in an EPX applicator nozzle. 23°C
Shear Strength Test Methods
Shear Strength Type Substrate Test Time Test Temperature Test Method
900 psi Overlap shear strength Etched Aluminum -53°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
1,500 psi Overlap shear strength Etched Aluminum 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
300 psi Overlap shear strength Etched Aluminum 900 sec 82°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
1,500 psi Overlap shear strength Aluminum-Etched 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
950 psi Overlap shear strength Aluminum-MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
1,000 psi Overlap shear strength Cold Rolled Steel-MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
950 psi Overlap shear strength Copper-MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
700 psi Overlap shear strength Brass- MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
750 psi Overlap shear strength Stainless Steel- MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
900 psi Overlap shear strength Galvanized Steel-MEK/abrade/MEK 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
490 psi Overlap shear strength ABS 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
330 psi Overlap shear strength PVC 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
250 psi Overlap shear strength Polycarbonate 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
100 psi Overlap shear strength Polyacrylic 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
950 psi Overlap shear strength FRP 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
125 psi Overlap shear strength SBR/Steel 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
140 psi Overlap shear strength Neoprene/Steel 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
140 psi Overlap shear strength Nitrile/Steel 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
0 psi Overlap shear strength Aluminum 600 sec 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
400 psi Overlap shear strength Aluminum 1,200 sec 23°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate except for aluminum. Two panels 0.063 in. thick, 4 in. x 7 in. of 2024 T-3 clad aluminum were bonded and cut into 1 in. wide samples after 24 hours. The thickness of the bond line was 0.005 - 0.008 in. All strengths were measured at 73°F (23°C) except where noted. (Tests per ASTM D 1002-72.)
Peel Strength Test Methods
Peel Strength Type Substrate Test Temperature Test Method
2 (psi) T-Peel strength Aluminum etched, 17-20 mil bondline 23°C T-peel strengths were measured on 1 in. wide bonds at 73°F (23°C). The testing jaw separation rate was 20 inches per minute. The substrates were 0.032 in. thick. (Tests per ASTM D 1876-61T.)
2 (psi) T-Peel Strength Aluminum etched, 5-8 mil bondline 23°C T-peel strengths were measured on 1 in. wide bonds at 73°F (23°C). The testing jaw separation rate was 20 inches per minute. The substrates were 0.032 in. thick. (Tests per ASTM D 1876-61T.)
2 (psi) T-Peel strength Cold Rolled Steel, 17-20 mil bondline MEK/abrade/MEK 23°C T-peel strengths were measured on 1 in. wide bonds at 73°F (23°C). The testing jaw separation rate was 20 inches per minute. The substrates were 0.032 in. thick. (Tests per ASTM D 1876-61T.)
Compressive Strength Test Methods
Compressive Strength Test Temperature Test Method
8,400 psi 23°C ASTM D 695-68T
Chemical Resistance Test Methods
Chemical Resistance Test Method
1, 1, 1-Trichlorethane Solvent resistance was determined using cured (24 hrs RT + 2 hrs 160°F [71°C]) samples (1/2 in. x 4 in. x 1/8 in. thickness) immersed in the test solvent for 1 hour and 1 month. After the allowed period of time, the sample was removed and visually examined for surface attack as compared to the control.
Acetone
Freon TF
Freon TMC
Isopropyl Alcohol
RMA Flux
Solvent Resistance
Environmental Resistance Test Methods
Environmental Resistance Test Method
Water Vapor 73°F (23°C)/50% RH Water Vapor; 30 days 160°F/100 RH, 3 days
Dielectric Strength Test Methods
Dielectric Strength Test Method
860 V/mil ASTM D 149
Thermal Conductivity Test Methods
Thermal Conductivity Temperature Test Method
0.18 W/m°K 46°C Thermal conductivity determined using ASTM C177 and C-matic Instrument with 2 in. diameter samples.
0.19 W/m°K 46°C Thermal conductivity determined using ASTM C177 and C-matic Instrument with 2 in. diameter samples.
Volume Resistivity Test Methods
Volume Resistivity Test Method
3.5e12 (ohms/cm) ASTM D 257
Shore D Hardness Test Methods
Shore D Hardness Shore Hardness Test Method
80 to 85 ASTM D 2240
Machinable
Coefficient of Thermal Expansion (CTE) Test Methods
Coefficient of Thermal Expansion (CTE) CTE Temperature (°C) CTE Test Method
60e-6 (in./ in/°C) -40 to 20°C Coefficient of thermal expansion determined using DuPont (TMA) using a heating rate of 10°C (50°F) per minute. Second heat values given.
209e-6 (in./ in/°C) 60 to 120°C Coefficient of thermal expansion determined using DuPont (TMA) using a heating rate of 10°C (50°F) per minute. Second heat values given.
Glass Transition Temp (Tg) Test Methods
Glass Transition Temp (Tg) Glass Transition Temperature (Tg) Test Method
33°C Glass transition temperature (Tg) determined using Perkin Elmer (DSC) Analyzer with a heating rate of 20°C (68°F) per minute. Second heat values given.