• Description for 3M DP110 Translucent

    Fast cure flexible epoxy • 30 min. handling strength

    *See Terms of Use Below

    Application Type Bond
    1 Part or 2 Part 2 Part
    Material Form Liquid
    Substrate Acrylic, Aluminum, Fiber-Reinforced Polyester, Copper, Fiber, Metal, ABS, Polycarbonate, PVC, Neoprene Rubber, Cold rolled Steel, Stainless Steel, Metal: Brass, Plastic, PVC (Rigid), Rubber, Galvanized Steel, Styrene Butadiene Rubber, Steel
    Manufacturer 3M
    Chemistry Epoxy, Amine, Modified Epoxy
    Cure Method Base/Accelerator
    Cure Temperature (°C) 23
    Cure Time (min) Fast, 2,880
    Viscosity (cPs) 55,000
    Color Translucent, Yellow
    Chemical Resistance Salt spray, Tap water
    High Temperature Resistance (°C) 82
    Low Temperature Resistance (°C) -55
  • Technical Data

    Overview
    • amet dolor.
      • lorem tincidunt sed.
        sit elit dolor.
        adipiscing ipsum diam.
    • elit ut.
      • nonummy consectetuer.
        magna tincidunt.
    • tincidunt adipiscing aliquam.
      • consectetuer adipiscing.
    • aliquam dolore.
      • laoreet aliquam.
        lorem aliquam.
        consectetuer lorem.
    • aliquam laoreet.
      • consectetuer dolore sit.
        aliquam diam lorem.
    Specifications
    magna.
    aliquam. ut ipsum. dolor euismod.
    ipsum dolore lorem dolore. sit diam. diam.
    sit amet dolore. laoreet sed. euismod diam.
    dolore amet dolor. lorem. lorem magna.
    adipiscing nonummy lorem. ut amet. laoreet dolor.
    laoreet sit consectetuer. consectetuer. consectetuer.
    aliquam magna.
    dolor diam. dolor. nibh.
    sed ipsum. sit. sed.
    amet. ut. magna amet.
    consectetuer. lorem magna consectetuer. dolor amet.
    elit magna lorem.
    magna. dolore. nonummy dolore.
    magna. sed. dolor.
    sit aliquam tincidunt consectetuer. ipsum. tincidunt ut.
    erat nibh aliquam. diam elit. magna lorem.
    erat. lorem. lorem euismod.
    nonummy nonummy sit. nibh euismod. diam adipiscing.
    consectetuer lorem elit. sed nibh dolore. adipiscing.
    aliquam.
    sed. sit. dolore.
    dolor lorem. aliquam sit magna. laoreet.
    amet consectetuer. diam elit. ipsum.
    elit ut amet magna.
    amet sed. laoreet aliquam. adipiscing tincidunt.
    amet ipsum dolor. amet amet ut. ut magna.
    euismod lorem lorem magna. ut. sed ut.
    euismod nonummy. sit. euismod.
    sit aliquam sed lorem. nonummy. dolor consectetuer.
    laoreet erat. dolor adipiscing. diam euismod.
    erat tincidunt aliquam. sed adipiscing. laoreet euismod.
    dolore aliquam ut sed. sit ipsum nibh. nibh.
  • Best Practices

    *See Terms of Use Below

    1. consectetuer nibh sed.

      tincidunt elit tincidunt erat ut dolore. adipiscing ut elit diam sit euismod.

      lorem sit ut laoreet sit magna dolor. diam magna dolor sit adipiscing nibh adipiscing. lorem amet sed laoreet magna lorem ipsum.

    2. adipiscing ut magna.

      erat laoreet dolor erat consectetuer sed tincidunt nibh. magna amet nonummy magna dolore dolore nonummy nonummy. laoreet sed adipiscing amet laoreet magna magna adipiscing.

    3. nonummy diam sed erat.

      sit sed amet euismod lorem euismod nibh magna magna. tincidunt diam amet sit lorem tincidunt dolore erat sed.

      ipsum aliquam laoreet dolore amet ipsum dolor dolor diam. amet diam dolore amet euismod dolor consectetuer dolor elit.

    4. lorem amet dolore aliquam magna adipiscing.

      nibh consectetuer magna lorem dolor nonummy sed laoreet laoreet. nonummy sed ut elit sed erat sed aliquam elit. nibh nonummy magna lorem ipsum nonummy tincidunt ipsum tincidunt. aliquam aliquam elit laoreet adipiscing diam lorem tincidunt amet.

  • Comparable Materials

    *See Terms of Use Below

Information provided by Gluespec

Why Register?

  • View Technical Details
  • View Test Methods
  • View Key Specifications
  • View Similar Materials
  • Save your Project Searches

Already registered? Sign in.

Questions? Learn more about Gluespec

Gluespec Poll

When you're researching or sourcing materials online, what device are you using?
Cure Temperature Test Methods
Cure Temperature Cure Time Test Method
23°C 48 hour cure @ 75°F (24°C) under 2 psi pressure
Cure Time Test Methods
Cure Time Test Method
Fast
2,880 min 48 hour cure @ 75°F (24°C) under 2 psi pressure
Viscosity Test Methods
Viscosity Temperature
55,000 cPs 73°C
Work / Pot Time Test Methods
Work / Pot Time Temperature
8 to 13 min 23°C
8 min
Peel Strength Test Methods
Peel Strength Type Substrate Test Temperature Test Method
20 piw T-Peel Aluminum 24°C T-Peel bonds were measured on 1 in. wide specimens cut from two FPL etched 8 in.x 8 in. x .032 in., 2024 T3 clad aluminum panels bonded together. The separation note of the testing jaws was 20 in./minute. Tests similar to ASTM D-1876.
Shear Strength Test Methods
Shear Strength Type Substrate Test Temperature Test Method
2,500 psi Overlap shear strength Aluminum -55°C Overlap shear shear strength was measured on FPL etched 1 in. wide by 1/2 in. overlap specimens. The bonds were made from 2 panels of 4 in. x 7 in. x .063 in., 2024 T3 clad aluminum bonded together and cut into 1 in. wide specimens. The separation rate of the testing jaws was .1 in./minute. Tests similar to ASTM D-1002.
2,500 psi Overlap shear strength Aluminum 24°C Overlap shear shear strength was measured on FPL etched 1 in. wide by 1/2 in. overlap specimens. The bonds were made from 2 panels of 4 in. x 7 in. x .063 in., 2024 T3 clad aluminum bonded together and cut into 1 in. wide specimens. The separation rate of the testing jaws was .1 in./minute. Tests similar to ASTM D-1002.
270 psi Overlap shear strength Aluminum 71°C Overlap shear shear strength was measured on FPL etched 1 in. wide by 1/2 in. overlap specimens. The bonds were made from 2 panels of 4 in. x 7 in. x .063 in., 2024 T3 clad aluminum bonded together and cut into 1 in. wide specimens. The separation rate of the testing jaws was .1 in./minute. Tests similar to ASTM D-1002.
200 psi Overlap shear strength Aluminum 82°C Overlap shear shear strength was measured on FPL etched 1 in. wide by 1/2 in. overlap specimens. The bonds were made from 2 panels of 4 in. x 7 in. x .063 in., 2024 T3 clad aluminum bonded together and cut into 1 in. wide specimens. The separation rate of the testing jaws was .1 in./minute. Tests similar to ASTM D-1002.
1,000 psi Overlap shear strength Aluminum/Aluminum 24°C Overlap shear strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the substrates were: cold rolled, galvanized and stainless steel – 0.056-0.062 in., copper – 0.032 in., brass – 0.036 in., rubbers – 0.125 in., plastics – 0.125 in. All surfaces were prepared by solvent wiping/abrading/solvent wiping. The jaw separation rate used for testing was 0.1 in. per minute for metals, 2 in. per minute for plastics, and 20 in. per minute for rubbers.
1,500 psi Overlap shear strength Cold Rolled Steel/Cold Rolled Steel 24°C Overlap shear strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the substrates were: cold rolled, galvanized and stainless steel – 0.056-0.062 in., copper – 0.032 in., brass – 0.036 in., rubbers – 0.125 in., plastics – 0.125 in. All surfaces were prepared by solvent wiping/abrading/solvent wiping. The jaw separation rate used for testing was 0.1 in. per minute for metals, 2 in. per minute for plastics, and 20 in. per minute for rubbers.
1,500 psi Overlap shear strength Stainless Steel/Stainless Steel 24°C Overlap shear strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the substrates were: cold rolled, galvanized and stainless steel – 0.056-0.062 in., copper – 0.032 in., brass – 0.036 in., rubbers – 0.125 in., plastics – 0.125 in. All surfaces were prepared by solvent wiping/abrading/solvent wiping. The jaw separation rate used for testing was 0.1 in. per minute for metals, 2 in. per minute for plastics, and 20 in. per minute for rubbers.
1,500 psi Overlap shear strength Galvanized Steel/Galvanized Steel 24°C Overlap shear strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the substrates were: cold rolled, galvanized and stainless steel – 0.056-0.062 in., copper – 0.032 in., brass – 0.036 in., rubbers – 0.125 in., plastics – 0.125 in. All surfaces were prepared by solvent wiping/abrading/solvent wiping. The jaw separation rate used for testing was 0.1 in. per minute for metals, 2 in. per minute for plastics, and 20 in. per minute for rubbers.
1,500 psi Overlap shear strength Copper/Copper 24°C Overlap shear strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the substrates were: cold rolled, galvanized and stainless steel – 0.056-0.062 in., copper – 0.032 in., brass – 0.036 in., rubbers – 0.125 in., plastics – 0.125 in. All surfaces were prepared by solvent wiping/abrading/solvent wiping. The jaw separation rate used for testing was 0.1 in. per minute for metals, 2 in. per minute for plastics, and 20 in. per minute for rubbers.
1,500 psi Overlap shear strength Brass/Brass 24°C Overlap shear strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the substrates were: cold rolled, galvanized and stainless steel – 0.056-0.062 in., copper – 0.032 in., brass – 0.036 in., rubbers – 0.125 in., plastics – 0.125 in. All surfaces were prepared by solvent wiping/abrading/solvent wiping. The jaw separation rate used for testing was 0.1 in. per minute for metals, 2 in. per minute for plastics, and 20 in. per minute for rubbers.
80 to 100 psi Overlap shear strength Styrene Butadiene Rubber/Steel 24°C Overlap shear strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the substrates were: cold rolled, galvanized and stainless steel – 0.056-0.062 in., copper – 0.032 in., brass – 0.036 in., rubbers – 0.125 in., plastics – 0.125 in. All surfaces were prepared by solvent wiping/abrading/solvent wiping. The jaw separation rate used for testing was 0.1 in. per minute for metals, 2 in. per minute for plastics, and 20 in. per minute for rubbers.
40 to 60 psi Overlap shear strength Neoprene Rubber/Steel 24°C Overlap shear strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the substrates were: cold rolled, galvanized and stainless steel – 0.056-0.062 in., copper – 0.032 in., brass – 0.036 in., rubbers – 0.125 in., plastics – 0.125 in. All surfaces were prepared by solvent wiping/abrading/solvent wiping. The jaw separation rate used for testing was 0.1 in. per minute for metals, 2 in. per minute for plastics, and 20 in. per minute for rubbers.
500 psi Overlap shear strength ABS/ABS Plastic 24°C Overlap shear strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the substrates were: cold rolled, galvanized and stainless steel – 0.056-0.062 in., copper – 0.032 in., brass – 0.036 in., rubbers – 0.125 in., plastics – 0.125 in. All surfaces were prepared by solvent wiping/abrading/solvent wiping. The jaw separation rate used for testing was 0.1 in. per minute for metals, 2 in. per minute for plastics, and 20 in. per minute for rubbers.
400 psi Overlap shear strength PVC/PVC, Rigid 24°C Overlap shear strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the substrates were: cold rolled, galvanized and stainless steel – 0.056-0.062 in., copper – 0.032 in., brass – 0.036 in., rubbers – 0.125 in., plastics – 0.125 in. All surfaces were prepared by solvent wiping/abrading/solvent wiping. The jaw separation rate used for testing was 0.1 in. per minute for metals, 2 in. per minute for plastics, and 20 in. per minute for rubbers.
500 psi Overlap shear strength Polycarbonate/Polycarbonate 24°C Overlap shear strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the substrates were: cold rolled, galvanized and stainless steel – 0.056-0.062 in., copper – 0.032 in., brass – 0.036 in., rubbers – 0.125 in., plastics – 0.125 in. All surfaces were prepared by solvent wiping/abrading/solvent wiping. The jaw separation rate used for testing was 0.1 in. per minute for metals, 2 in. per minute for plastics, and 20 in. per minute for rubbers.
250 psi Overlap shear strength Acrylic/Acrylic 24°C Overlap shear strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the substrates were: cold rolled, galvanized and stainless steel – 0.056-0.062 in., copper – 0.032 in., brass – 0.036 in., rubbers – 0.125 in., plastics – 0.125 in. All surfaces were prepared by solvent wiping/abrading/solvent wiping. The jaw separation rate used for testing was 0.1 in. per minute for metals, 2 in. per minute for plastics, and 20 in. per minute for rubbers.
1,400 psi Overlap shear strength Fiber Reinforced Polyester/Fiber Reinforced Polyester 24°C The substrate broke during the test instead of the bond., Overlap shear strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the substrates were: cold rolled, galvanized and stainless steel – 0.056-0.062 in., copper – 0.032 in., brass – 0.036 in., rubbers – 0.125 in., plastics – 0.125 in. All surfaces were prepared by solvent wiping/abrading/solvent wiping. The jaw separation rate used for testing was 0.1 in. per minute for metals, 2 in. per minute for plastics, and 20 in. per minute for rubbers.
Thermal Conductivity Test Methods
Thermal Conductivity Temperature
0.18 W/m°K 45°C
Coefficient of Thermal Expansion (CTE) Test Methods
Coefficient of Thermal Expansion (CTE) CTE Temperature (°C)
80e-6 -50 to 0°C
200e-6 -50 to 110°C