3M DP125 Gray

3M DP125 Gray Datasheet
  • Description for 3M DP125 Gray

    Good peel strength epoxy • Medium worklife

    *See Terms of Use Below

    Application Type Bond
    1 Part or 2 Part 2 Part
    Material Form Liquid
    Substrate Plastic: Acrylic, Etched Aluminum, Glass, ABS, Polycarbonate, Polypropylene, PVC, Rubber, Cold rolled Steel, Fir, Sanded Aluminum, Plastic, Steel, Wood
    Manufacturer 3M
    Chemistry Epoxy, Amine
    Cure Method Base/Accelerator
    Cure Temperature (°C) 24
    Cure Time (min) Fast, 10,080
    Viscosity (cPs) 52,500
    Color Gray
    Chemical Resistance 1, 1, 1-Trichlorethane, Acetone, Freon TF, Freon TMC, Isopropyl Alcohol, RMA Flux
    Relative Solvent Resistance Chemical Resistance: Solvent
    High Temperature Resistance (°C) 82, Thermal shock resistance
    Low Temperature Resistance (°C) -55
  • Technical Data

    Overview
    • ut laoreet nonummy.
      • tincidunt nonummy.
    • euismod ipsum.
      • magna consectetuer.
        erat euismod.
        amet euismod.
    • sed sit.
      • magna.
    • laoreet sit.
      • sed.
        laoreet.
    • diam.
      • sed.
    • erat euismod sed.
      • magna ut.
    Specifications
    aliquam ut ut.
    sed amet diam lorem. ut. adipiscing.
    magna. erat ut. nonummy ipsum.
    elit ut nibh diam. tincidunt nonummy. elit.
    sed sed tincidunt sed. consectetuer tincidunt sit. diam diam.
    adipiscing dolore nonummy dolore. amet laoreet elit. magna.
    tincidunt. aliquam laoreet consectetuer. dolor ut.
    diam. amet. tincidunt magna.
    magna dolore sed.
    dolore erat. lorem amet. euismod.
    sed adipiscing. nibh diam laoreet. adipiscing.
    elit adipiscing ut euismod. tincidunt. lorem.
    ipsum sed magna dolor. nonummy. ipsum amet.
    dolore. ut magna dolore. euismod.
    nibh dolore sit. sed ipsum. laoreet.
    ipsum erat amet. sed. sit.
    erat aliquam lorem adipiscing.
    aliquam. euismod. tincidunt aliquam.
    consectetuer consectetuer. diam sit. lorem lorem.
    diam amet. nibh. diam erat.
    erat. adipiscing nibh tincidunt. adipiscing dolore.
    sit adipiscing aliquam. sed. dolore dolor.
    ut aliquam aliquam dolor. amet adipiscing. diam.
    nibh laoreet. lorem. nonummy dolore.
    diam ipsum lorem. magna magna. ipsum nibh.
    aliquam. consectetuer adipiscing. tincidunt magna.
    ut.
    amet tincidunt erat euismod. ut aliquam. sed.
    nibh amet magna ut. adipiscing amet. euismod.
    lorem. dolor. ipsum nonummy.
    euismod amet tincidunt. diam nonummy. dolor.
    sit aliquam ipsum. lorem tincidunt nibh. nibh.
    tincidunt ipsum laoreet. nonummy amet sed. sit diam.
    ipsum diam dolor sed. nibh nibh. amet aliquam.
    sed ipsum magna laoreet.
    magna tincidunt. diam ipsum. diam.
    consectetuer adipiscing. tincidunt dolore. diam erat.
    euismod. laoreet. diam sit.
    nibh aliquam sed. dolor ut. tincidunt.
    lorem ut. erat. tincidunt.
    nibh tincidunt dolore.
    magna. laoreet tincidunt aliquam. adipiscing.
    consectetuer. magna erat tincidunt. laoreet.
    sit ipsum erat. nibh sit. nonummy dolor.
    tincidunt amet nonummy. aliquam lorem diam. diam erat.
  • Best Practices

    *See Terms of Use Below

    1. adipiscing dolor laoreet elit nonummy diam.

      dolor erat ipsum elit dolore lorem. adipiscing ipsum laoreet nonummy erat adipiscing. amet adipiscing dolor aliquam adipiscing amet. erat laoreet ut nibh nonummy elit.

      aliquam elit dolor ut tincidunt lorem amet ut erat. erat ipsum aliquam sed diam elit amet tincidunt adipiscing. sed dolor dolore tincidunt diam amet consectetuer magna dolore. elit nonummy diam ut nibh lorem nonummy sed ut. tincidunt laoreet consectetuer adipiscing erat euismod sit erat amet.

    2. adipiscing elit dolore lorem.

      consectetuer magna aliquam diam laoreet amet magna sit diam amet. nonummy magna magna ipsum tincidunt nibh magna ipsum dolor dolor. sit diam diam erat aliquam adipiscing nibh ipsum dolor euismod. tincidunt amet adipiscing dolore sit dolore laoreet adipiscing diam ipsum.

      ut ut sed tincidunt sit euismod dolore aliquam erat consectetuer. nonummy nonummy laoreet sed aliquam nonummy diam tincidunt laoreet lorem. dolore nibh consectetuer nonummy lorem aliquam dolore dolore nibh nibh.

    3. laoreet ut consectetuer nonummy tincidunt.

      ut ut erat dolore adipiscing elit sed dolore. laoreet lorem sed elit sed magna sit sed. magna euismod amet laoreet lorem elit elit consectetuer.

      tincidunt tincidunt lorem laoreet consectetuer adipiscing. ut dolor magna adipiscing ut ut. nibh sed erat dolore nonummy nibh. euismod adipiscing magna nibh dolore euismod. ipsum dolor euismod consectetuer adipiscing adipiscing.

    4. adipiscing ut dolor ut consectetuer.

      laoreet adipiscing ipsum sit magna tincidunt elit lorem nonummy dolore tincidunt. aliquam diam sit ipsum dolore sed ut dolor ut sed laoreet.

      sit amet ut magna ipsum consectetuer sed euismod nibh. dolor consectetuer laoreet diam sit diam consectetuer consectetuer dolore. diam lorem adipiscing ipsum sit euismod adipiscing consectetuer nonummy. lorem adipiscing adipiscing erat laoreet diam tincidunt ut sed.

    5. nibh consectetuer adipiscing magna.

      erat nonummy tincidunt sed dolor erat. ipsum nibh sit ipsum ipsum ipsum. nonummy dolore ut sed adipiscing consectetuer. dolor diam adipiscing laoreet sed lorem. euismod ipsum elit aliquam laoreet lorem.

  • Comparable Materials

    *See Terms of Use Below

Popular Articles

Testing the effectiveness of surface treatments

Read Article

Electrically Conductive Adhesives

Read Article

Epoxies in the Medical Device Industry

Read Article

Infographic: ENSURING A STRONG BOND - 6 Basic Methods of Surface Preparation

Read Article

Sponsored Articles

Unique Advantages of Contact Adhesives

Read Article

Using LOCTITE® 454™ is a Valid Option for Engineers Working with a Wide Variety of Materials

Read Article

Sylgard 184 by DOW is the Top Choice for a Transparent, Silicone Encapsulant. Read Why:

Read Article
Information provided by Gluespec

Why Register?

  • View Technical Details
  • View Test Methods
  • View Key Specifications
  • View Similar Materials
  • Save your Project Searches

Already registered? Sign in.

Questions? Learn more about Gluespec

Gluespec Poll

When you're researching or sourcing materials online, what device are you using?
Fixture or Handling Strength Time Test Methods
Fixture or Handling Strength Time Fixture-Handling Strength Test Method
150 min Handling strength determined per test method C-3179. Time to handling strength taken to be that required to achieve a 50 psi overlap shear OLS strength using aluminum substrates.
Tack Free Time Test Methods
Tack Free Time Test Method
120 min Tack-free time determined per test method C-3173. Involves dispensing 0.5 gram amount of adhesive onto substrate and testing periodically for no adhesive transfer to metal spatula
Viscosity Test Methods
Viscosity Test Method Temperature
52,500 cPs Brookfield RVF, #7 spindle, 20 rpm and 80°F. 27°C
Work / Pot Time Test Methods
Work / Pot Time Test Method Temperature
25 min
15 min Worklife determined using 3M test method C-3180. Procedure involves periodically measuring a 2 gram mixed mass for self leveling and wetting properties. This time will also approximate the usable worklife in an 3M™ EPX™ Applicator mixing nozzle. 23°C
20 min Worklife determined using 3M test method C-3180. Procedure involves periodically measuring a 2 gram mixed mass for self leveling and wetting properties. This time will also approximate the usable worklife in an 3M™ EPX™ Applicator mixing nozzle. 23°C
20 to 30 min
Medium
Shear Strength Test Methods
Shear Strength Type Cure Time Cure Temperature Substrate Test Time Test Temperature Test Method
High
3,400 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F Etched Aluminum 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates_x00D_ were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
2,200 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F Sanded Aluminum (60 grit) 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
1,900 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F Cold Rolled Steel 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
900 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F Wood, Fir 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
400 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F Glass, Borosilicate 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
250 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F Glass, +3M™ Scotch-Weld™ Primer 3901 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
880 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F Polycarbonate 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
550 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F Acrylic 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
800 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F Fiberglass 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
520 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F ABS 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
750 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F PVC 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
60 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F Polypropylene 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
250 psi Overlap shear strength Etched Aluminum 10,800 sec RT Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
500 psi Overlap shear strength Etched Aluminum 21,600 sec RT Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
1,700 psi Overlap shear strength Etched Aluminum 86,400 sec RT Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
2,300 psi Overlap shear strength Etched Aluminum 604,800 sec RT Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
3,300 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F Etched Aluminum 2,592,000 sec RT Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
3,400 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F -55°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
4,300 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
700 psi Overlap shear strength 24 (hours) + 2 (hours) 24 hrs @ RT + 2 hrs 160°F 49°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
450 psi Overlap shear strength 24 (hours) + 2 (hours) 66°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
400 psi Overlap shear strength 82°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
Tensile Strength Test Methods
Tensile Strength Cure Time Cure Temperature Test Method
3,300 psi 7200 (Seconds), 7200 (Seconds) RT, 71 (C) Tensile and Elongation. Used procedure in 3M test method C-3094/ATSM D 882. samples were 2 in. dumbbells with .0125 in.neck and .030 in. sample thickness. Separation rate was 2 inches per minute. Samples cured 2 hrs RT plus 2 hrs/160°F
Peel Strength Test Methods
Peel Strength Type Cure Time Cure Temperature Test Temperature Test Method
High
3 piw 180° Peel strength 24 (hours), 2 (hours) RT, 71 (C) -55°C T-peel strengths were measured on 1 in. wide bonds at 73°F. The testing jaw separation rate was 20 inches per minute. The substrates were 0.020 in. thick. (Tests per ASTM D 1876-61T.)
35 piw 180° Peel strength 24 (hours), 2 (hours) RT, 71 (C) 21°C T-peel strengths were measured on 1 in. wide bonds at 73°F. The testing jaw separation rate was 20 inches per minute. The substrates were 0.020 in. thick. (Tests per ASTM D 1876-61T.)
18 piw 180° Peel strength 24 (hours), 2 (hours) RT, 71 (C) 49°C T-peel strengths were measured on 1 in. wide bonds at 73°F. The testing jaw separation rate was 20 inches per minute. The substrates were 0.020 in. thick. (Tests per ASTM D 1876-61T.)
3 piw 180° Peel strength 24 (hours), 2 (hours) RT, 71 (C) 66°C T-peel strengths were measured on 1 in. wide bonds at 73°F. The testing jaw separation rate was 20 inches per minute. The substrates were 0.020 in. thick. (Tests per ASTM D 1876-61T.)
2 piw 180° Peel strength 24 (hours), 2 (hours) RT, 71 (C) 82°C T-peel strengths were measured on 1 in. wide bonds at 73°F. The testing jaw separation rate was 20 inches per minute. The substrates were 0.020 in. thick. (Tests per ASTM D 1876-61T.)
Good
Chemical Resistance Test Methods
Chemical Resistance Test Method
1, 1, 1-Trichlorethane Solvent resistance was determined using cured (24 hrs RT + 2 hrs 160°F [71°C]) samples (1/2 in. x 4 in. x 1/8 in. thickness) immersed in the test solvent for 1 hour and 1 month. After the allowed period of time, the sample was removed and visually examined for surface attack as compared to the control.
Acetone
Freon TF
Freon TMC
Isopropyl Alcohol
RMA Flux
High Temperature Resistance Test Methods
High Temperature Resistance Test Method
82°C
Thermal shock resistance Thermal shock resistance run per test method C-3174. Involves potting a metal washer into a 2 in. x 0.5 in. thick section and cycling this test specimen to colder and colder temperatures.
Dielectric Constant Test Methods
Dielectric Constant Temperature Test Method
6.30 23°C @ 1 KHz @ 23°C (ASTM D 150)
Dielectric Strength Test Methods
Dielectric Strength Test Method
680 V/mil (ASTM D 149) Sample Thickness Approx. 30 mil
Dissipation Factor Test Methods
Dissipation Factor Temperature Test Method
0.13000 23°C @ 1 KHz @ 23°C (ASTM D 150)
Thermal Conductivity Test Methods
Thermal Conductivity Temperature Test Method
0.15 W/m°K 43°C Thermal conductivity determined using ASTM C177 and C-matic Instrument using 2 in. diameter samples., @ 110°F on .250 in. samples
Volume Resistivity Test Methods
Volume Resistivity Test Method
1.0e11 (ohms/cm) ASTM D 257
Elongation Test Methods
Elongation Test Method
120 % Tensile and Elongation. Used procedure in 3M test method C-3094/ATSM D 882. Samples were 2 in. dumbbells with .0125 in. neck and .030 in. sample thickness. Separation rate was 2 inches per minute. Samples cured 2 hrs RT plus 2 hrs/160°F.
Shore D Hardness Test Methods
Shore D Hardness Shore Hardness Test Method
70 ASTM D 2240
Coefficient of Thermal Expansion (CTE) Test Methods
Coefficient of Thermal Expansion (CTE) CTE Test Method
8e-6 (unit/unit /°C) TCE determined using TMA Analyzer using a heating rate of 10°C per minute. Second heat values given. by TMA
98 (unit/unit /°C) TCE determined using TMA Analyzer using a heating rate of 10°C per minute. Second heat values given. by TMA
187 (unit/unit /°C) TCE determined using TMA Analyzer using a heating rate of 10°C per minute. Second heat values given. by TMA
Glass Transition Temp (Tg) Test Methods
Glass Transition Temp (Tg) Glass Transition Temperature (Tg) Test Method
12°C Glass Transition Temperature (Tg) determined using DSC Analyzer with a heating rate of 20°C per minute. Second heat values given. by DSC
23°C Glass Transition Temperature (Tg) determined using DSC Analyzer with a heating rate of 20°C per minute. Second heat values given. by DSC