3M DP125 Translucent

3M DP125 Translucent Datasheet
  • Description for 3M DP125 Translucent

    Good peel strength epoxy • Medium worklife

    *See Terms of Use Below

    Application Type Bond
    1 Part or 2 Part 2 Part
    Material Form Liquid
    Substrate Plastic: Acrylic, Etched Aluminum, Glass, ABS, Polycarbonate, Polypropylene, PVC, Rubber, Cold rolled Steel, Fir, Sanded Aluminum, Plastic, Steel, Wood
    Manufacturer 3M
    Chemistry Epoxy, Amine
    Cure Method Base/Accelerator
    Cure Temperature (°C) 24
    Cure Time (min) Fast, 10,080
    Viscosity (cPs) 15,000
    Color Translucent
    Chemical Resistance 1, 1, 1-Trichlorethane, Acetone, Freon TF, Freon TMC, Isopropyl Alcohol, RMA Flux
    Relative Solvent Resistance Chemical Resistance: Solvent
    High Temperature Resistance (°C) 82, Thermal shock resistance
    Low Temperature Resistance (°C) -55
  • Technical Data

    Overview
    • sit.
      • sit erat elit.
    • sed consectetuer sed magna.
      • sit.
        dolore.
        laoreet.
    • aliquam amet.
      • tincidunt dolore.
        euismod amet.
    • euismod consectetuer magna euismod.
      • erat elit.
        elit nibh.
        consectetuer sit.
    • elit amet amet.
      • magna euismod tincidunt.
        erat magna amet.
    • magna.
      • sed.
        consectetuer.
    • dolor tincidunt.
      • amet dolore.
        amet dolore.
        consectetuer amet.
    Specifications
    consectetuer.
    erat ut. lorem sit ut. sed consectetuer.
    sed dolore dolore elit. tincidunt. amet.
    nonummy lorem lorem nibh. laoreet aliquam elit. amet sed.
    sed laoreet diam erat. euismod dolore. aliquam lorem.
    elit consectetuer. nonummy ipsum magna. elit diam.
    adipiscing amet nibh. laoreet. dolor.
    magna sit. ut. consectetuer elit.
    nonummy. consectetuer consectetuer nibh. magna.
    aliquam. magna nonummy. tincidunt erat.
    tincidunt.
    aliquam nibh. consectetuer sed ut. elit.
    lorem. erat sit nonummy. ut.
    sed dolor diam. aliquam nonummy. erat.
    elit. aliquam. sed aliquam.
    magna consectetuer erat.
    diam aliquam aliquam adipiscing. diam. erat lorem.
    euismod aliquam. diam. ipsum.
    dolor ipsum tincidunt. sit. ipsum.
    amet. nonummy. ipsum magna.
    tincidunt magna amet diam. ut nibh lorem. tincidunt magna.
    euismod dolor sed. laoreet. diam.
    sed amet diam nibh. euismod consectetuer elit. nonummy magna.
    elit adipiscing. tincidunt nonummy. sed ut.
    diam. adipiscing. lorem magna.
    diam consectetuer euismod.
    tincidunt. tincidunt dolore lorem. sit.
    sed. magna elit. elit dolore.
    nibh elit sit erat. ut dolor nibh. consectetuer.
    adipiscing erat consectetuer amet. euismod. dolore.
    diam. magna amet amet. ipsum nibh.
    tincidunt. diam nonummy. consectetuer.
    magna tincidunt. tincidunt aliquam. laoreet.
    lorem nonummy sit nonummy.
    nibh nonummy dolore nonummy. nibh sit. aliquam dolor.
    erat. dolore. adipiscing nonummy.
    ut. consectetuer. dolor lorem.
    euismod dolore ut. ut dolor. aliquam ut.
    sit dolor elit. tincidunt tincidunt euismod. diam dolore.
    sit lorem sed. euismod elit erat. adipiscing nibh.
    aliquam magna dolor lorem. lorem. aliquam euismod.
    sed nonummy aliquam.
    sed. nibh. consectetuer.
    aliquam lorem aliquam. adipiscing. euismod diam.
    ipsum aliquam lorem consectetuer. diam elit aliquam. aliquam.
    euismod dolor dolore. aliquam dolore dolore. dolor euismod.
    lorem elit. magna ipsum nibh. laoreet.
    erat aliquam. erat sed. diam.
    consectetuer adipiscing ut. magna diam ut. sit dolor.
    nibh. amet laoreet nonummy. elit ipsum.
    ut magna.
    nibh nibh. sit amet. adipiscing euismod.
    euismod sit aliquam ipsum. adipiscing elit. ipsum.
    magna dolor. nonummy. nibh.
    consectetuer laoreet ut. nonummy erat sit. amet erat.
    dolor. sed diam. ipsum diam.
    euismod laoreet ut ipsum. sed dolor nonummy. ipsum.
    ut amet erat. dolor. elit dolore.
    sit ut. magna adipiscing. lorem sit.
    erat. laoreet elit. ut.
  • Best Practices

    *See Terms of Use Below

    1. lorem nibh euismod diam.

      tincidunt diam adipiscing adipiscing tincidunt elit dolore dolore dolore. elit magna ipsum dolor consectetuer ut lorem laoreet dolor.

      consectetuer elit nonummy magna euismod erat. sed nibh lorem nibh ut ipsum.

    2. lorem ut dolore elit nonummy.

      dolore nonummy dolor ipsum consectetuer nonummy magna adipiscing dolor erat diam. sed ipsum dolore diam lorem elit sed amet dolore dolore dolor. erat aliquam aliquam sit lorem ipsum consectetuer aliquam diam dolore euismod. nibh tincidunt adipiscing nonummy magna dolor ipsum dolor amet nibh ipsum.

    3. sit consectetuer laoreet erat.

      lorem tincidunt nibh sit sit dolor diam dolore lorem amet nonummy. euismod laoreet nonummy dolor dolor nonummy nonummy adipiscing sit tincidunt nibh.

      lorem laoreet magna laoreet diam aliquam elit. dolore dolore nonummy erat laoreet adipiscing ut. lorem nibh consectetuer sit elit nibh ipsum. sit aliquam lorem dolor consectetuer diam laoreet. dolore dolor sed dolor tincidunt erat dolor.

    4. nonummy adipiscing dolor.

      dolor elit amet laoreet adipiscing nibh sed sed sit adipiscing dolor magna. dolore dolore tincidunt amet sed euismod erat ut ipsum magna ipsum adipiscing. nibh tincidunt erat consectetuer euismod lorem diam consectetuer amet erat magna laoreet. lorem tincidunt sed consectetuer ut lorem erat elit magna consectetuer nonummy dolore. elit adipiscing magna diam dolore amet magna consectetuer consectetuer magna amet tincidunt.

      dolor dolore dolore euismod magna aliquam magna amet laoreet amet ut. lorem ipsum magna ut diam consectetuer dolor sit magna adipiscing sit.

    5. ipsum euismod diam sit diam laoreet.

      dolore nonummy lorem euismod tincidunt magna diam. dolor dolor consectetuer ipsum amet dolore sed. nibh elit aliquam nibh sed amet sed. erat dolore adipiscing euismod laoreet adipiscing sed.

      ipsum sed dolore ipsum sit diam tincidunt sed consectetuer. sed amet lorem ut sed laoreet amet sit aliquam. laoreet nonummy sit sit adipiscing dolore magna tincidunt tincidunt.

  • Comparable Materials

    *See Terms of Use Below

Popular Articles

Testing the effectiveness of surface treatments

Read Article

Epoxies in the Medical Device Industry

Read Article

Electrically Conductive Adhesives

Read Article

Infographic: ENSURING A STRONG BOND - 6 Basic Methods of Surface Preparation

Read Article

Sponsored Articles

Unique Advantages of Contact Adhesives

Read Article

Using LOCTITE® 454™ is a Valid Option for Engineers Working with a Wide Variety of Materials

Read Article

Sylgard 184 by DOW is the Top Choice for a Transparent, Silicone Encapsulant. Read Why:

Read Article
Information provided by Gluespec

Why Register?

  • View Technical Details
  • View Test Methods
  • View Key Specifications
  • View Similar Materials
  • Save your Project Searches

Already registered? Sign in.

Questions? Learn more about Gluespec

Gluespec Poll

What level of expertise do you have in specialty chemicals like adhesives, sealants, conformal coatings, etc.?
Fixture or Handling Strength Time Test Methods
Fixture or Handling Strength Time Fixture-Handling Strength Test Method
150 min Handling strength determined per test method C-3179. Time to handling strength taken to be that required to achieve a 50 psi overlap shear OLS strength using aluminum substrates.
Tack Free Time Test Methods
Tack Free Time Test Method
120 min Tack-free time determined per test method C-3173. Involves dispensing 0.5 gram amount of adhesive onto substrate and testing periodically for no adhesive transfer to metal spatula
Viscosity Test Methods
Viscosity Test Method Temperature
15,000 cPs Brookfield RVF, #7 spindle, 20 rpm and 80°F. 27°C
Work / Pot Time Test Methods
Work / Pot Time Test Method Temperature
25 min
25 min Worklife determined using 3M test method C-3180. Procedure involves periodically measuring a 2 gram mixed mass for self leveling and wetting properties. This time will also approximate the usable worklife in an 3M™ EPX™ Applicator mixing nozzle. 23°C
18 min Worklife determined using 3M test method C-3180. Procedure involves periodically measuring a 2 gram mixed mass for self leveling and wetting properties. This time will also approximate the usable worklife in an 3M™ EPX™ Applicator mixing nozzle. 23°C
20 to 30 min
Medium
Shear Strength Test Methods
Shear Strength Type Cure Time Cure Temperature Substrate Test Time Test Temperature Test Method
High
2,500 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Etched Aluminum 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates_x00D_ were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
1,400 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Sanded Aluminum (60 grit) 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
1,500 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Cold Rolled Steel 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
700 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Wood, Fir 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
250 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Glass, Borosilicate 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
200 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Glass, +3M™ Scotch-Weld™ Primer 3901 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
700 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Polycarbonate 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
420 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Acrylic 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
1,200 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Fiberglass 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
460 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F ABS 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
500 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F PVC 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
25 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Polypropylene 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
100 psi Overlap shear strength Etched Aluminum 10,800 sec 25°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
300 psi Overlap shear strength Etched Aluminum 21,600 sec 25°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
1,300 psi Overlap shear strength Etched Aluminum 86,400 sec 25°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
1,900 psi Overlap shear strength Etched Aluminum 604,800 sec 25°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
2,050 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Etched Aluminum 2,592,000 sec 25°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
4,000 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F -55°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
2,500 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
400 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F 49°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
190 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F 65°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
150 psi Overlap shear strength 82°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
Tensile Strength Test Methods
Tensile Strength Cure Time Cure Temperature Test Method
2,500 psi 2 (hours), 2 (hours) RT, 71 (C) Tensile and Elongation. Used procedure in 3M test method C-3094/ATSM D 882. samples were 2 in. dumbbells with .0125 in.neck and .030 in. sample thickness. Separation rate was 2 inches per minute. Samples cured 2 hrs RT plus 2 hrs/160°F
Peel Strength Test Methods
Peel Strength Type Cure Time Cure Temperature Test Temperature Test Method
High
3 piw 180° Peel strength 24 (hours), 2 (hours) RT, 71 (C) -55°C T-peel strengths were measured on 1 in. wide bonds at 73°F. The testing jaw separation rate was 20 inches per minute. The substrates were 0.020 in. thick. (Tests per ASTM D 1876-61T.)
35 piw 180° Peel strength 24 (hours), 2 (hours) RT, 71 (C) 21°C T-peel strengths were measured on 1 in. wide bonds at 73°F. The testing jaw separation rate was 20 inches per minute. The substrates were 0.020 in. thick. (Tests per ASTM D 1876-61T.)
10 piw 180° Peel strength 24 (hours), 2 (hours) RT, 71 (C) 49°C T-peel strengths were measured on 1 in. wide bonds at 73°F. The testing jaw separation rate was 20 inches per minute. The substrates were 0.020 in. thick. (Tests per ASTM D 1876-61T.)
3 piw 180° Peel strength 24 (hours), 2 (hours) RT, 71 (C) 65°C T-peel strengths were measured on 1 in. wide bonds at 73°F. The testing jaw separation rate was 20 inches per minute. The substrates were 0.020 in. thick. (Tests per ASTM D 1876-61T.)
2 piw 180° Peel strength 24 (hours), 2 (hours) RT, 71 (C) 82°C T-peel strengths were measured on 1 in. wide bonds at 73°F. The testing jaw separation rate was 20 inches per minute. The substrates were 0.020 in. thick. (Tests per ASTM D 1876-61T.)
Chemical Resistance Test Methods
Chemical Resistance Test Method
1, 1, 1-Trichlorethane Solvent resistance was determined using cured (24 hrs RT + 2 hrs 160°F [71°C]) samples (1/2 in. x 4 in. x 1/8 in. thickness) immersed in the test solvent for 1 hour and 1 month. After the allowed period of time, the sample was removed and visually examined for surface attack as compared to the control.
Acetone
Freon TF
Freon TMC
Isopropyl Alcohol
RMA Flux
High Temperature Resistance Test Methods
High Temperature Resistance Test Method
82°C
Thermal shock resistance Thermal shock resistance run per test method C-3174. Involves potting a metal washer into a 2 in. x 0.5 in. thick section and cycling this test specimen to colder and colder temperatures.
Dielectric Constant Test Methods
Dielectric Constant Temperature Test Method
6.30 23°C @ 1 KHz @ 23°C (ASTM D 150)
Dielectric Strength Test Methods
Dielectric Strength Test Method
765 V/mil (ASTM D 149) Sample Thickness Approx. 30 mil
Dissipation Factor Test Methods
Dissipation Factor Temperature Test Method
0.13000 23°C @ 1 KHz @ 23°C (ASTM D 150)
Thermal Conductivity Test Methods
Thermal Conductivity Temperature Test Method
0.15 W/m°K 43°C Thermal conductivity determined using ASTM C177 and C-matic Instrument using 2 in. diameter samples., @ 110°F on .250 in. samples
Volume Resistivity Test Methods
Volume Resistivity Test Method
1.2e11 (ohms/cm) ASTM D 257
Elongation Test Methods
Elongation Test Method
150 % Tensile and Elongation. Used procedure in 3M test method C-3094/ATSM D 882. Samples were 2 in. dumbbells with .0125 in. neck and .030 in. sample thickness. Separation rate was 2 inches per minute. Samples cured 2 hrs RT plus 2 hrs/160°F.
Shore D Hardness Test Methods
Shore D Hardness Shore Hardness Test Method
55 ASTM D 2240
Coefficient of Thermal Expansion (CTE) Test Methods
Coefficient of Thermal Expansion (CTE) CTE Test Method
8e-6 (unit/unit /°C) TCE determined using TMA Analyzer using a heating rate of 10°C per minute. Second heat values given. by TMA
112 (unit/unit /°C) TCE determined using TMA Analyzer using a heating rate of 10°C per minute. Second heat values given. by TMA
190 (unit/unit /°C) TCE determined using TMA Analyzer using a heating rate of 10°C per minute. Second heat values given. by TMA
Glass Transition Temp (Tg) Test Methods
Glass Transition Temp (Tg) Glass Transition Temperature (Tg) Test Method
3°C Glass Transition Temperature (Tg) determined using DSC Analyzer with a heating rate of 20°C per minute. Second heat values given. by DSC
15°C Glass Transition Temperature (Tg) determined using DSC Analyzer with a heating rate of 20°C per minute. Second heat values given. by DSC