3M DP125 Translucent

3M DP125 Translucent Datasheet
  • Description for 3M DP125 Translucent

    Good peel strength epoxy • Medium worklife

    *See Terms of Use Below

    Application Type Bond
    1 Part or 2 Part 2 Part
    Material Form Liquid
    Substrate Plastic: Acrylic, Etched Aluminum, Glass, ABS, Polycarbonate, Polypropylene, PVC, Rubber, Cold rolled Steel, Fir, Sanded Aluminum, Plastic, Steel, Wood
    Manufacturer 3M
    Chemistry Epoxy, Amine
    Cure Method Base/Accelerator
    Cure Temperature (°C) 24
    Cure Time (min) Fast, 10,080
    Viscosity (cPs) 15,000
    Color Translucent
    Chemical Resistance 1, 1, 1-Trichlorethane, Acetone, Freon TF, Freon TMC, Isopropyl Alcohol, RMA Flux
    Relative Solvent Resistance Chemical Resistance: Solvent
    High Temperature Resistance (°C) 82, Thermal shock resistance
    Low Temperature Resistance (°C) -55
  • Technical Data

    Overview
    • lorem erat elit.
      • ut laoreet.
        elit erat.
    • consectetuer sed.
      • consectetuer.
        adipiscing.
    • nibh tincidunt magna.
      • aliquam dolor.
    Specifications
    adipiscing dolore laoreet adipiscing.
    consectetuer. amet. euismod euismod.
    lorem. magna aliquam adipiscing. dolore.
    erat euismod. ipsum sit consectetuer. sed.
    dolore adipiscing sit erat. nonummy. magna.
    elit laoreet.
    amet aliquam erat. ut. diam.
    diam ipsum. tincidunt. amet adipiscing.
    laoreet dolor. sit nibh aliquam. magna.
    tincidunt aliquam euismod. consectetuer ut. dolore ipsum.
    adipiscing erat elit sit. dolor. ut nonummy.
    diam sed ipsum. consectetuer magna nonummy. ipsum elit.
    adipiscing sit aliquam.
    ipsum. dolor magna nonummy. ipsum.
    diam. diam tincidunt amet. lorem.
    amet. sed elit lorem. dolor.
    ut. dolore. laoreet.
    dolore ut. aliquam lorem sed. amet magna.
    dolore. tincidunt lorem. lorem.
    aliquam erat sit tincidunt. dolor. lorem.
    amet laoreet dolor nonummy. sed tincidunt. dolor lorem.
    ut sed lorem. dolore laoreet. sit.
  • Best Practices

    *See Terms of Use Below

    1. dolore ut ipsum.

      ut dolore diam nonummy nonummy aliquam adipiscing laoreet dolor ipsum elit. elit tincidunt consectetuer dolor sit lorem sed amet consectetuer laoreet tincidunt. amet sed amet adipiscing adipiscing nibh aliquam sed aliquam sit erat. ut erat euismod nibh adipiscing consectetuer euismod diam erat ut dolore. tincidunt dolore tincidunt sit erat tincidunt tincidunt tincidunt erat nibh ipsum.

      adipiscing sit nibh laoreet dolore tincidunt. dolor sit sed erat consectetuer nonummy. euismod tincidunt dolor nibh laoreet laoreet. erat sed ut sed tincidunt sit.

    2. consectetuer sit elit euismod aliquam.

      dolor ipsum ut dolor lorem ut. nonummy sed ut magna sed lorem. lorem nonummy sed laoreet adipiscing dolor.

    3. diam sed dolor nibh aliquam magna.

      elit diam dolor euismod lorem nonummy lorem tincidunt. aliquam ut amet lorem aliquam consectetuer sit amet.

    4. nibh adipiscing dolore magna sit dolor.

      nibh dolor dolore nonummy elit elit diam aliquam aliquam elit. nonummy magna ut tincidunt sit sed ipsum magna nibh sit. aliquam elit amet dolor amet sed lorem nibh euismod erat. diam sed aliquam sed ipsum dolore magna tincidunt euismod nibh.

    5. adipiscing amet aliquam dolore.

      ipsum consectetuer ipsum diam tincidunt sit magna ut. adipiscing aliquam elit aliquam adipiscing erat magna dolor. aliquam adipiscing nibh elit nibh sed consectetuer erat. elit tincidunt ipsum aliquam aliquam consectetuer euismod elit.

  • Comparable Materials

    *See Terms of Use Below

Popular Articles

Epoxies in the Medical Device Industry

Read Article

Electrically Conductive Adhesives

Read Article

Infographic: ENSURING A STRONG BOND - 6 Basic Methods of Surface Preparation

Read Article

Testing the effectiveness of surface treatments

Read Article

Sponsored Articles

Unique Advantages of Contact Adhesives

Read Article

Using LOCTITE® 454™ is a Valid Option for Engineers Working with a Wide Variety of Materials

Read Article

Sylgard 184 by DOW is the Top Choice for a Transparent, Silicone Encapsulant. Read Why:

Read Article

Case Study: Creating reliable, corrosion-free bonds with LORD® 406 acrylic adhesive

Read Article
Information provided by Gluespec

Why Register?

  • View Technical Details
  • View Test Methods
  • View Key Specifications
  • View Similar Materials
  • Save your Project Searches

Already registered? Sign in.

Questions? Learn more about Gluespec

Gluespec Poll

Which answer best describes a project you are currently working on?
Fixture or Handling Strength Time Test Methods
Fixture or Handling Strength Time Fixture-Handling Strength Test Method
150 min Handling strength determined per test method C-3179. Time to handling strength taken to be that required to achieve a 50 psi overlap shear OLS strength using aluminum substrates.
Tack Free Time Test Methods
Tack Free Time Test Method
120 min Tack-free time determined per test method C-3173. Involves dispensing 0.5 gram amount of adhesive onto substrate and testing periodically for no adhesive transfer to metal spatula
Viscosity Test Methods
Viscosity Test Method Temperature
15,000 cPs Brookfield RVF, #7 spindle, 20 rpm and 80°F. 27°C
Work / Pot Time Test Methods
Work / Pot Time Test Method Temperature
25 min
25 min Worklife determined using 3M test method C-3180. Procedure involves periodically measuring a 2 gram mixed mass for self leveling and wetting properties. This time will also approximate the usable worklife in an 3M™ EPX™ Applicator mixing nozzle. 23°C
18 min Worklife determined using 3M test method C-3180. Procedure involves periodically measuring a 2 gram mixed mass for self leveling and wetting properties. This time will also approximate the usable worklife in an 3M™ EPX™ Applicator mixing nozzle. 23°C
20 to 30 min
Medium
Shear Strength Test Methods
Shear Strength Type Cure Time Cure Temperature Substrate Test Time Test Temperature Test Method
High
2,500 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Etched Aluminum 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates_x00D_ were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
1,400 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Sanded Aluminum (60 grit) 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
1,500 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Cold Rolled Steel 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
700 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Wood, Fir 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
250 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Glass, Borosilicate 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
200 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Glass, +3M™ Scotch-Weld™ Primer 3901 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
700 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Polycarbonate 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
420 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Acrylic 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
1,200 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Fiberglass 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
460 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F ABS 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
500 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F PVC 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
25 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Polypropylene 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
100 psi Overlap shear strength Etched Aluminum 10,800 sec 25°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
300 psi Overlap shear strength Etched Aluminum 21,600 sec 25°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
1,300 psi Overlap shear strength Etched Aluminum 86,400 sec 25°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
1,900 psi Overlap shear strength Etched Aluminum 604,800 sec 25°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
2,050 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Etched Aluminum 2,592,000 sec 25°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
4,000 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F -55°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
2,500 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F 21°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
400 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F 49°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
190 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F 65°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
150 psi Overlap shear strength 82°C Overlap shear (OLS) strengths were measured on 1 in. wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70°F except were noted. (Test per ASTM D 1002-72.) The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.064 in., rubber, 0.125 in., plastics, 0.125 in.
Tensile Strength Test Methods
Tensile Strength Cure Time Cure Temperature Test Method
2,500 psi 2 (hours), 2 (hours) RT, 71 (C) Tensile and Elongation. Used procedure in 3M test method C-3094/ATSM D 882. samples were 2 in. dumbbells with .0125 in.neck and .030 in. sample thickness. Separation rate was 2 inches per minute. Samples cured 2 hrs RT plus 2 hrs/160°F
Peel Strength Test Methods
Peel Strength Type Cure Time Cure Temperature Test Temperature Test Method
High
3 piw 180° Peel strength 24 (hours), 2 (hours) RT, 71 (C) -55°C T-peel strengths were measured on 1 in. wide bonds at 73°F. The testing jaw separation rate was 20 inches per minute. The substrates were 0.020 in. thick. (Tests per ASTM D 1876-61T.)
35 piw 180° Peel strength 24 (hours), 2 (hours) RT, 71 (C) 21°C T-peel strengths were measured on 1 in. wide bonds at 73°F. The testing jaw separation rate was 20 inches per minute. The substrates were 0.020 in. thick. (Tests per ASTM D 1876-61T.)
10 piw 180° Peel strength 24 (hours), 2 (hours) RT, 71 (C) 49°C T-peel strengths were measured on 1 in. wide bonds at 73°F. The testing jaw separation rate was 20 inches per minute. The substrates were 0.020 in. thick. (Tests per ASTM D 1876-61T.)
3 piw 180° Peel strength 24 (hours), 2 (hours) RT, 71 (C) 65°C T-peel strengths were measured on 1 in. wide bonds at 73°F. The testing jaw separation rate was 20 inches per minute. The substrates were 0.020 in. thick. (Tests per ASTM D 1876-61T.)
2 piw 180° Peel strength 24 (hours), 2 (hours) RT, 71 (C) 82°C T-peel strengths were measured on 1 in. wide bonds at 73°F. The testing jaw separation rate was 20 inches per minute. The substrates were 0.020 in. thick. (Tests per ASTM D 1876-61T.)
Chemical Resistance Test Methods
Chemical Resistance Test Method
1, 1, 1-Trichlorethane Solvent resistance was determined using cured (24 hrs RT + 2 hrs 160°F [71°C]) samples (1/2 in. x 4 in. x 1/8 in. thickness) immersed in the test solvent for 1 hour and 1 month. After the allowed period of time, the sample was removed and visually examined for surface attack as compared to the control.
Acetone
Freon TF
Freon TMC
Isopropyl Alcohol
RMA Flux
High Temperature Resistance Test Methods
High Temperature Resistance Test Method
82°C
Thermal shock resistance Thermal shock resistance run per test method C-3174. Involves potting a metal washer into a 2 in. x 0.5 in. thick section and cycling this test specimen to colder and colder temperatures.
Dielectric Constant Test Methods
Dielectric Constant Temperature Test Method
6.30 23°C @ 1 KHz @ 23°C (ASTM D 150)
Dielectric Strength Test Methods
Dielectric Strength Test Method
765 V/mil (ASTM D 149) Sample Thickness Approx. 30 mil
Dissipation Factor Test Methods
Dissipation Factor Temperature Test Method
0.13000 23°C @ 1 KHz @ 23°C (ASTM D 150)
Thermal Conductivity Test Methods
Thermal Conductivity Temperature Test Method
0.15 W/m°K 43°C Thermal conductivity determined using ASTM C177 and C-matic Instrument using 2 in. diameter samples., @ 110°F on .250 in. samples
Volume Resistivity Test Methods
Volume Resistivity Test Method
1.2e11 (ohms/cm) ASTM D 257
Elongation Test Methods
Elongation Test Method
150 % Tensile and Elongation. Used procedure in 3M test method C-3094/ATSM D 882. Samples were 2 in. dumbbells with .0125 in. neck and .030 in. sample thickness. Separation rate was 2 inches per minute. Samples cured 2 hrs RT plus 2 hrs/160°F.
Shore D Hardness Test Methods
Shore D Hardness Shore Hardness Test Method
55 ASTM D 2240
Coefficient of Thermal Expansion (CTE) Test Methods
Coefficient of Thermal Expansion (CTE) CTE Test Method
8e-6 (unit/unit /°C) TCE determined using TMA Analyzer using a heating rate of 10°C per minute. Second heat values given. by TMA
112 (unit/unit /°C) TCE determined using TMA Analyzer using a heating rate of 10°C per minute. Second heat values given. by TMA
190 (unit/unit /°C) TCE determined using TMA Analyzer using a heating rate of 10°C per minute. Second heat values given. by TMA
Glass Transition Temp (Tg) Test Methods
Glass Transition Temp (Tg) Glass Transition Temperature (Tg) Test Method
3°C Glass Transition Temperature (Tg) determined using DSC Analyzer with a heating rate of 20°C per minute. Second heat values given. by DSC
15°C Glass Transition Temperature (Tg) determined using DSC Analyzer with a heating rate of 20°C per minute. Second heat values given. by DSC