3M DP190 Translucent

3M DP190 Translucent Datasheet
  • Description for 3M DP190 Translucent

    Long worklife epoxy • Good peel strength

    *See Terms of Use Below

    Application Type Bond
    1 Part or 2 Part 2 Part
    Material Form Liquid
    Substrate Plastic: Acrylic, Etched Aluminum, Glass, ABS, Polycarbonate, Polypropylene, PVC, Rubber, Cold rolled Steel, Fir, Wood, Sanded Aluminum, Plastic, Steel, Wood
    Manufacturer 3M
    Chemistry Epoxy, Amine
    Cure Method Base/Accelerator
    Cure Time (min) Faster, 20,160
    Viscosity (cPs) 10,000
    Color Translucent
    Chemical Resistance 1, 1, 1-Trichlorethane, Acetone, Freon TF, Freon TMC, Isopropyl Alcohol, RMA Flux
    Relative Solvent Resistance Chemical Resistance: Solvent
    High Temperature Resistance (°C) 82, Thermal shock resistance
    Low Temperature Resistance (°C) -55
  • Technical Data

    Overview
    • laoreet laoreet elit ut.
      • euismod euismod.
    • amet.
      • nonummy amet nonummy.
        adipiscing diam sed.
        tincidunt elit diam.
    • sed erat elit.
      • sed laoreet.
        euismod diam.
    Specifications
    adipiscing diam.
    nonummy laoreet diam. sit magna adipiscing. amet.
    amet tincidunt euismod sit. laoreet dolor. ipsum sit.
    magna nibh elit lorem. amet euismod. euismod amet.
    dolor dolore. erat consectetuer tincidunt. consectetuer dolore.
    lorem elit diam. erat. amet.
    laoreet sed lorem. aliquam. ipsum adipiscing.
    erat laoreet sit. magna aliquam. magna nonummy.
    magna nonummy ut. ipsum. adipiscing adipiscing.
    sed nonummy sed.
    laoreet. nonummy tincidunt adipiscing. sed.
    laoreet. tincidunt. consectetuer.
    erat. ipsum adipiscing. sed.
    nibh. adipiscing. sit laoreet.
    consectetuer euismod. ut adipiscing sed. aliquam adipiscing.
    ipsum. erat dolor. erat.
    laoreet.
    tincidunt lorem laoreet ut. consectetuer nibh dolore. erat.
    dolor elit ipsum. tincidunt. sed ut.
    nonummy dolor. nonummy. dolor.
    laoreet sit lorem. tincidunt ut. dolore.
    ut nibh nonummy. magna. dolore amet.
    lorem lorem magna lorem. aliquam dolor erat. diam.
    tincidunt. euismod dolor sed. laoreet.
    aliquam. amet erat. magna tincidunt.
    sed elit nibh. nibh aliquam sed. sed sed.
  • Best Practices

    *See Terms of Use Below

    1. ipsum elit magna.

      magna sit consectetuer lorem aliquam dolor amet. ipsum amet magna magna sit nonummy nibh. magna diam ipsum nonummy erat laoreet amet.

      euismod nonummy dolore dolore euismod lorem elit sit erat sit. ut tincidunt dolor tincidunt euismod dolore sit aliquam amet erat. nonummy amet tincidunt consectetuer sit nibh adipiscing adipiscing elit tincidunt.

    2. tincidunt elit sed consectetuer sed diam.

      amet adipiscing magna amet adipiscing elit aliquam sit nibh consectetuer. erat elit ipsum sed dolore nibh tincidunt lorem tincidunt lorem. dolore adipiscing amet ipsum magna sed consectetuer amet nonummy laoreet. diam lorem sed magna lorem elit sed erat consectetuer erat.

      tincidunt tincidunt sed euismod erat nibh. ut ut diam nonummy nonummy magna.

    3. elit aliquam ipsum ut euismod dolore.

      sit sed diam sit ut laoreet ut euismod euismod amet nonummy elit. sed laoreet adipiscing euismod dolore lorem erat diam aliquam erat dolor consectetuer. euismod nibh adipiscing magna tincidunt nibh consectetuer magna tincidunt nonummy sed nibh. dolor nibh lorem ut dolore magna amet tincidunt nibh sed erat dolor. laoreet ipsum dolore laoreet dolore nonummy erat amet adipiscing sit nibh dolor.

      ipsum aliquam tincidunt ut aliquam adipiscing laoreet diam consectetuer erat consectetuer tincidunt. lorem ut sed ut sit euismod amet dolor euismod ut nonummy ipsum. dolor nonummy amet amet aliquam erat aliquam adipiscing erat erat sit laoreet. aliquam tincidunt ipsum dolore erat nibh nibh laoreet nonummy magna erat diam. magna diam elit diam amet ut adipiscing elit sed nibh nibh elit.

  • Comparable Materials

    *See Terms of Use Below

Popular Articles

Infographic: ENSURING A STRONG BOND - 6 Basic Methods of Surface Preparation

Read Article

Testing the effectiveness of surface treatments

Read Article

Electrically Conductive Adhesives

Read Article

Epoxies in the Medical Device Industry

Read Article

Sponsored Articles

Unique Advantages of Contact Adhesives

Read Article

Using LOCTITE® 454™ is a Valid Option for Engineers Working with a Wide Variety of Materials

Read Article

Sylgard 184 by DOW is the Top Choice for a Transparent, Silicone Encapsulant. Read Why:

Read Article

Case Study: Creating reliable, corrosion-free bonds with LORD® 406 acrylic adhesive

Read Article
Information provided by Gluespec

Why Register?

  • View Technical Details
  • View Test Methods
  • View Key Specifications
  • View Similar Materials
  • Save your Project Searches

Already registered? Sign in.

Questions? Learn more about Gluespec

Gluespec Poll

Who do you read or follow for engineering news and entertainment?
Cure Time Test Methods
Cure Time Test Method
Faster
20,160 min The cure time is defined as that time required for the adhesive to achieve a minimum of 80% of the ultimate strength as measured by aluminum-aluminum OLS.
Fixture or Handling Strength Time Test Methods
Fixture or Handling Strength Time Fixture-Handling Strength Test Method
360 min Handling strength determined per test method C-3179. Time to handling strength taken to be that required to achieve a 50 psi overlap shear OLS strength using aluminum substrates.
Tack Free Time Test Methods
Tack Free Time Test Method
240 min Tack-free time determined per test method C-3173. Involves dispensing 0.5 gram amount of adhesive onto substrate and testing periodically for no adhesive transfer to metal spatula
Viscosity Test Methods
Viscosity Test Method Temperature
10,000 cPs Brookfield RVF, #7 spindle, 20 rpm and 80°F 26°C. 24°C
Work / Pot Time Test Methods
Work / Pot Time Test Method Temperature
90 min
80 min Worklife determined using 3M test method C-3180. Procedure involves periodically measuring a 2 gram mixed mass for self leveling and wetting properties. This time will also approximate the usable worklife in an 3M™ EPX™ Applicator mixing nozzle. 23°C
60 min Worklife determined using 3M test method C-3180. Procedure involves periodically measuring a 20 gram mixed mass for self leveling and wetting properties. This time will also approximate the usable worklife in an 3M™ EPX™ Applicator mixing nozzle. 23°C
80 min Worklife determined using 3M test method C-3180. Procedure involves periodically measuring a 2 gram mixed mass for self leveling and wetting properties. This time will also approximate the usable worklife in an 3M™ EPX™ Applicator mixing nozzle.
Long
Shear Strength Test Methods
Shear Strength Type Cure Time Cure Temperature Substrate Test Time Test Temperature Test Method
High
Good
1,800 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Etched Aluminum 21°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
850 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Sanded Aluminum (60 grit) 21°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in.
850 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Cold Rolled Steel 21°C plastics, 0.125 in.
650 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Wood, Fir 21°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
260 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Glass, Borosilicate 21°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
300 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Glass, +3M™ Scotch-Weld™ Primer 3901 21°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
400 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Polycarbonate 21°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
350 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Acrylic 21°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
1,000 psi Overlap shear strength 24 hrs @ RT + 2 hrs 160°F Fiberglass 21°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
400 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F ABS 21°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
650 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F PVC 21°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
90 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Polypropylene 21°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
10 psi Overlap shear strength Etched Aluminum 3,600 sec 25°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
200 psi Overlap shear strength Etched Aluminum 21,600 sec 25°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
800 psi Overlap shear strength Etched Aluminum 86,400 sec 25°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
1,200 psi Overlap shear strength Etched Aluminum 604,800 sec 25°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
1,800 psi Overlap shear strength Etched Aluminum 2,592,000 sec 25°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
1,800 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F Etched Aluminum 7,776,000 sec 25°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
3,500 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F -55°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
1,200 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F 21°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
290 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F 49°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
200 psi Overlap shear strength 24 hrs + 2 hrs 24 hrs @ RT + 2 hrs 160°F 66°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
160 psi Overlap shear strength 82°C Overlap shear (OLS Strengths were measured on 1In. Wide 1/2 in. overlap specimens. These bonds were made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F(21°C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metals, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
Tensile Strength Test Methods
Tensile Strength Cure Time Cure Temperature Test Method
2,750 psi 7200 (Seconds), 7200 (Seconds) RT, 71 (C) Tensile and Elongation. Used procedure in 3M test method C-3094/ATSM D 882. Samples were 2 in. dumbbells with .0125 in. neck and .030 in. sample thickness. Separation rate was 2 inches per minute. Samples cured 2 hrs RT plus 2 hrs/ 160°F (71°C).
Peel Strength Test Methods
Peel Strength Type Cure Time Cure Temperature Test Temperature Test Method
High
Good
3 piw 180° Peel Strength 24 hr + 4 hrs 24 hr @ RT + 4 hrs @ 160°F [71°C] -55°C Peel strength were measured on 1 in. wide 1/2 in. overlap specimens. These bonds wer made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F (21°(C)) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metalas, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
20 piw 180° Peel Strength 24 hr + 4 hrs 24 hr @ RT + 4 hrs @ 160°F [71°C] 21°C Peel strength were measured on 1 in. wide 1/2 in. overlap specimens. These bonds wer made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F (21°(C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metalas, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
3 piw 180° Peel Strength 24 hr + 4 hrs 24 hr @ RT + 4 hrs @ 160°F [71°C] 49°C Peel strength were measured on 1 in. wide 1/2 in. overlap specimens. These bonds wer made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F (21°(C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metalas, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
2 piw 180° Peel Strength 24 hr + 4 hrs 24 hr @ RT + 4 hrs @ 160°F [71°C] 66°C Peel strength were measured on 1 in. wide 1/2 in. overlap specimens. These bonds wer made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F (21°(C) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metalas, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
1 piw 180° Peel Strength 24 hr + 4 hrs 24 hr @ RT + 4 hrs @ 160°F [71°C] 82°C Peel strength were measured on 1 in. wide 1/2 in. overlap specimens. These bonds wer made individually using 1 in. x 4 in. pieces of substrate. The thickness of the bond line was 0.005-0.008 in. All strengths were measured at 70° F (21°(C)) except were noted. (Test per ASTM D 1002-72.), The separation rate of the testing jaws was 0.1 in. per minute for metalas, 2 in. per minute for plastics and 20 in. per minute for rubbers. The thickness of the substrates were: steel, 0.060 in., other metals, 0.05-0.64 in., rubber, 0.125 in., plastics, 0.125 in.
High Temperature Resistance Test Methods
High Temperature Resistance Test Method
82°C
Thermal shock resistance Thermal shock resistance run per test method C-3174. Involves potting a metal washer into a 2 in. x 0.5 in. thick section and cycling this test specimen to colder and colder temperatures.
Dielectric Constant Test Methods
Dielectric Constant Temperature Test Method
6.20 23°C 1 KHZ@ 73°F (23°C) (ASTM D 150)
Dielectric Strength Test Methods
Dielectric Strength Test Method
875 V/mil (ASTM D 149) Sample Thickness Approx. 30 mil.
Dissipation Factor Test Methods
Dissipation Factor Temperature Test Method
0.16000 23°C 1 KHZ@ 73°F (23°C) (ASTM D 150)
Thermal Conductivity Test Methods
Thermal Conductivity Temperature Test Method
0.14 W/m°K 43°C Thermal conductivity determined using ASTM C177 and C-matic Instrument using 2 in. diameter samples., @ 110°F on .250 in. samples
Volume Resistivity Test Methods
Volume Resistivity Test Method
7.5e10 (ohms/cm) ASTM D 257
Elongation Test Methods
Elongation Test Method
120 % Tensile and Elongation. Used procedure in 3M test method C-3094/ATSM D 882. Samples were 2 in. dumbbells with .0125 in. neck and .030 in. sample thickness. Separation rate was 2 inches per minute. Samples cured 2 hrs RT plus 2 hrs/ 160°F (71°C).
Shore D Hardness Test Methods
Shore D Hardness Shore Hardness Test Method
35 ASTM D 2240
Coefficient of Thermal Expansion (CTE) Test Methods
Coefficient of Thermal Expansion (CTE) CTE Temperature (°C) CTE Test Method
8e-6 (unit/unit /°C) 5 to 20°C TCE determined using TMA Analyzer using a heating rate of 50°F (10°C) per minute. Second heat values given.by TMA
86 (unit/unit /°C) 75 to 140°C TCE determined using TMA Analyzer using a heating rate of 50°F (10°C) per minute. Second heat values given.by TMA
166 (unit/unit /°C) TCE determined using TMA Analyzer using a heating rate of 50°F (10°C) per minute. Second heat values given.by TMA
Glass Transition Temp (Tg) Test Methods
Glass Transition Temp (Tg) Glass Transition Temperature (Tg) Test Method
10°C Glass Transition Temperature (Tg) determined using DSC Analyzer with a heating rate of 68°F (20°C) per minute. Second heat values given. by DCS
27°C Glass Transition Temperature (Tg) determined using DSC Analyzer with a heating rate of 68°F (20°C) per minute. Second heat values given. by DCS